版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西百色市西林民族高中2026届数学高一上期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“当时,幂函数为减函数”是“或2”的()条件A.既不充分也不必要 B.必要不充分C.充分不必要 D.充要2.已知函数是定义在上的奇函数,当时,,则当时,的表达式是()A. B.C. D.3.如图()四边形为直角梯形,动点从点出发,由沿边运动,设点运动的路程为,面积为.若函数的图象如图(),则的面积为()A. B.C. D.4.已知,,,夹角为,如图所示,若,,且D为BC中点,则的长度为A. B.C.7 D.85.下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22x﹣cos22x6.若函数在定义域上的值域为,则()A. B.C. D.7.已知函数,则该函数的零点位于区间()A. B.C. D.8.已知某几何体的三视图如图所示,根据图中标出的尺寸单位:,可得这个几何体得体积是A. B.C.2 D.49.设,,,则的大小关系是()A. B.C. D.10.若函数是幂函数,且其图象过点,则函数的单调增区间为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知是内一点,,记的面积为,的面积为,则__________12.已知函数的零点依次为a,b,c,则=________13.已知正数x,y满足,则的最小值为_________14.已知函数给出下列四个结论:①存在实数,使函数为奇函数;②对任意实数,函数既无最大值也无最小值;③对任意实数和,函数总存在零点;④对于任意给定的正实数,总存在实数,使函数在区间上单调递减.其中所有正确结论的序号是______________.15.函数f(x)=+的定义域为____________16.过点P(4,2)并且在两坐标轴上截距相等的直线方程为(化为一般式)________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求最小正周期;(2)当时,求的值域.18.一几何体按比例绘制的三视图如图所示(单位:).(1)试画出它的直观图(不写作图过程);(2)求它的表面积和体积.19.已知函数(1)求函数的最小正周期;(2)将函数的图象向左平移个单位长度得到函数的图象,若关于的方程在上有2个不等的实数解,求实数的取值范围20.已知是偶函数,是奇函数,且,(1)求和的表达式;(2)若对于任意的,不等式恒成立,求的最大值21.如图所示,某市政府决定在以政府大楼O为中心,正北方向和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正面要朝市政府大楼.设扇形的半径OM=R,∠MOP=45°,OB与OM之间的夹角为θ.(1)将图书馆底面矩形ABCD的面积S表示成θ的函数.(2)若R=45m,求当θ为何值时,矩形ABCD的面积S最大?最大面积是多少?(取=1.414)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据幂函数的定义和性质,结合充分性、必要性的定义进行求解即可.【详解】当时,幂函数为减函数,所以有,所以幂函数为减函数”是“或2”的充分不必要条件,故选:C2、D【解析】利用函数的奇偶性求在上的表达式.【详解】令,则,故,又是定义在上的奇函数,∴.故选:D.3、B【解析】由题意,当在上时,;当在上时,图()在,时图象发生变化,由此可知,,根据勾股定理,可得,所以本题选择B选项.4、A【解析】AD为的中线,从而有,代入,根据长度进行数量积的运算便可得出的长度【详解】根据条件:;故选A【点睛】本题考查模长公式,向量加法、减法及数乘运算,向量数量积的运算及计算公式,根据公式计算是关键,是基础题.5、D【解析】A中,周期为,不是偶函数;B中,周期为,函数为奇函数;C中,周期为,函数为奇函数;D中,周期为,函数为偶函数6、A【解析】的对称轴为,且,然后可得答案.【详解】因为的对称轴为,且所以若函数在定义域上的值域为,则故选:A7、B【解析】分别将选项中区间的端点代入,利用零点存在性定理判断即可【详解】由题,,,,所以,故选:B【点睛】本题考查利用零点存在性定理判断零点所在区间,属于基础题8、B【解析】先根据三视图得到几何体的形状,然后再根据条件中的数据求得几何体的体积【详解】由三视图可知该几何体是一个以俯视图为底面的四棱锥,如下图中的四棱锥由题意得其底面面积,高,故几何体的体积故选B【点睛】由三视图还原几何体的方法(1)还原后的几何体一般为较熟悉的柱、锥、台、球的组合体(2)注意图中实、虚线,实际是原几何体中的可视线与被遮挡线(3)想象原形,并画出草图后进行三视图还原,把握三视图和几何体之间的关系,与所给三视图比较,通过调整准确画出原几何体9、C【解析】根据对数函数和幂函数单调性可比较出大小关系.【详解】,;,,,即,又,.故选:C.10、B【解析】分别求出m,a的值,求出函数的单调区间即可【详解】解:由题意得:,解得:,故,将代入函数的解析式得:,解得:,故,令,解得:,故在递增,故选B【点睛】本题考查了幂函数的定义以及对数函数的性质,是一道基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设BC中点为M,则,所以P到BC的距离为点A到BC距离的,故12、【解析】根据对称性得出,再由得出答案.【详解】因为函数与的图象关于对称,函数的图象关于对称,所以,又,所以.故答案为:13、8【解析】将等式转化为,再解不等式即可求解【详解】由题意,正实数,由(时等号成立),所以,所以,即,解得(舍),,(取最小值)所以的最小值为.故答案为:14、①②③④【解析】分别作出,和的函数的图象,由图象即可判断①②③④的正确性,即可得正确答案.【详解】如上图分别为,和时函数的图象,对于①:当时,,图象如图关于原点对称,所以存在使得函数为奇函数,故①正确;对于②:由三个图知当时,,当时,,所以函数既无最大值也无最小值;故②正确;对于③:如图和图中存在实数使得函数图象与没有交点,此时函数没有零点,所以对任意实数和,函数总存在零点不成立;故③不正确对于④:如图,对于任意给定的正实数,取即可使函数在区间上单调递减,故④正确;故答案为:①②④【点睛】关键点点睛:本题解题关键点是分段函数图象,涉及二次函数的图象,要讨论,和即明确分段区间,作出函数图象,数形结合可研究分段函数的性质.15、【解析】根据题意,结合限制条件,解指数不等式,即可求解.【详解】根据题意,由,解得且,因此定义域为.故答案为:.16、或【解析】根据直线在两坐标轴上截距相等,则截距可能为也可能不为,再结合直线方程求法,即可对本题求解【详解】由题意,设直线在两坐标轴上的截距均为,当时,设直线方程为:,因为直线过点,所以,即,所以直线方程为:,即:,当时,直线过点,且又过点,所以直线的方程为,即:,综上,直线的方程为:或.故答案为:或【点睛】本题考查直线方程的求解,考查能力辨析能力,应特别注意,截距相等,要分截距均为和均不为两种情况分别讨论.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据辅角公式可得,由此即可求出的最小正周期;(2)根据,可得,在结合正弦函数的性质,即可求出结果.【小问1详解】解:所以最小正周期为;【小问2详解】,,的值域为.18、(1)直观图见解析;(2),.【解析】(1)由三视图直接画出它的直观图即可;(2)由三视图可知该几何体是长方体被截取一个角,分别计算其表面积和体积可得答案.【详解】解:(1)直观图如图所示.(2)由三视图可知该几何体是长方体被截取一个角,且该几何体的体积是以,,为棱的长方体的体积的.在直角梯形中,作,则是正方形,∴.在中,,,∴.∴.∴几何体的体积.∴该几何体的表面积为,体积为.【点睛】本题主要考查空间几何体的三视图与直观图、空间几何体的表面积与体积,考查学生的直观想象能力,数学计算能力,属于中档题.19、(1)(2)【解析】(1)利用三角恒等变换化简,由周期公式求解即可;(2)先求出的解析式,再把所求转化为方程在上有2个不等的实数解,令,根据图象即可求得结论【小问1详解】解:,即,所以函数的最小正周期为【小问2详解】解:由已知可得,方程在上有2个不等的实数解,即方程在上有2个不等的实数解令,因为,,,,,令,则,,作出函数图象如下图所示:要使方程在上有2个不等的实数解,则20、(1),;(2)【解析】(1)根据已知的关系式以及函数的奇偶性列出另一个关系式,联立求出函数和的表达式;(2)先将已知不等式进行化简,然后可以分离参数,利用基本不等式求最值即可求解.【详解】(1)因为为偶函数,为奇函数,①,所以,即②,联立①②,解得:,,(2)因为,,由对于任意的恒成立,可得对于任意的恒成立,即对于任意的恒成立,所以对于任意的恒成立,所以,因为,当且仅当即时等号成立,所以,所以的最大值为21、(1)S=R2sin-R2,θ∈;(2)当θ=时,矩形ABCD面积S最大,最大面积为838.35m2.【解析】(1)设OM与BC的交点为F,用表示出,,,从而可得面积的表达式;(2)结合正弦函数的性质求得最大值【详解】解:(1)由题意,可知点M为PQ的中点,所以OM⊥AD.设OM与BC的交点为F,则BC=2Rsinθ,OF=Rcosθ,所以AB=OF-AD=Rcosθ-Rsinθ.所以S=AB·BC=2Rsinθ(Rcosθ-Rsinθ)=R2(2sinθcosθ-2sin2θ)=R2(sin2θ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美术专业绘画题库及答案
- 安全管理人员安全教育培训试题附参考答案
- 医院保洁人员院感培训试题及答案
- 技能应用大赛试题及答案
- 住院医师(规培)试题及答案
- 注册会计师《经济法》反垄断法律制度单元测试题附答案
- 医院编外试题及答案
- 2025药学专业知识一试题及答案「」
- 高频黄岩社工面试题及答案
- 辽宁省朝阳市省直机关公开遴选公务员笔试题及答案解析(A类)
- 福建省宁德市2025-2026学年高三上学期期末考试语文试题(含答案)
- 建筑施工行业2026年春节节前全员安全教育培训
- 食品生产余料管理制度
- 2026年浦发银行社会招聘备考题库必考题
- 2026年山东省烟草专卖局(公司)高校毕业生招聘流程笔试备考试题及答案解析
- 专题23 广东省深圳市高三一模语文试题(学生版)
- 2026年时事政治测试题库100道含完整答案(必刷)
- 八年级下册《昆虫记》核心阅读思考题(附答案解析)
- 2025年中职艺术设计(设计理论)试题及答案
- 2025年体育行业专家聘用合同范本
- ECMO患者血糖控制与胰岛素泵管理方案
评论
0/150
提交评论