2026届北京八中数学高二上期末联考试题含解析_第1页
2026届北京八中数学高二上期末联考试题含解析_第2页
2026届北京八中数学高二上期末联考试题含解析_第3页
2026届北京八中数学高二上期末联考试题含解析_第4页
2026届北京八中数学高二上期末联考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届北京八中数学高二上期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.变量,满足约束条件则的最小值为()A. B.C. D.52.从编号为1~120的商品中利用系统抽样的方法抽8件进行质检,若所抽样本中含有编号66的商品,则下列编号一定被抽到的是()A.111 B.52C.37 D.83.已知数列是等比数列,,数列是等差数列,,则的值是()A. B.C. D.4.下图是一个“双曲狭缝”模型,直杆沿着与它不平行也不相交的轴旋转时形成双曲面,双曲面的边缘为双曲线.已知该模型左、右两侧的两段曲线(曲线AB与曲线CD)所在的双曲线离心率为2,曲线AB与曲线CD中间最窄处间的距离为10cm,点A与点C,点B与点D均关于该双曲线的对称中心对称,且|AB|=30cm,则|AD|=()A.10cm B.20cmC.25cm D.30cm5.设等差数列的前n项和为.若,则()A.19 B.21C.23 D.386.已知向量,则下列结论正确的是()A.B.C.D.7.如果在一实验中,测得的四组数值分别是,则y与x之间的回归直线方程是()A. B.C. D.8.设、是椭圆:的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为A. B.C. D.9.已知数列的前n项和为,,,则()A. B.C. D.10.已知命题,,若是一个充分不必要条件,则的取值范围是()A. B.C. D.11.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.8 B.16C. D.12.函数在处有极小值5,则()A. B.C.或 D.或3二、填空题:本题共4小题,每小题5分,共20分。13.某高中高二年级学生在学习完成数学选择性必修一后进行了一次测试,总分为100分.现用分层随机抽样方法从学生的数学成绩中抽取一个样本量为40的样本,再将40个成绩样本数据分为6组:40,50),50,60),60,70),70,80),80,90),90,100,绘制得到如图所示的频率分布直方图.(1)从所给的频率分布直方图中估计成绩样本数据众数,平均数,中位数;(2)在区间40,50)和90,100内的两组学生成绩样本数据中,随机抽取两个进调查,求调查对象来自不同分组的概率.14.数列满足,则__________.15.函数在点处的切线方程是_________16.已知函数,则曲线在点处的切线方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和分别是,满足,,且.(1)求数列的通项公式;(2)若数列对任意都有恒成立,求.18.(12分)已知函数在处取得极值确定a的值;若,讨论的单调性19.(12分)已知圆,P(2,0),M点是圆Q上任意一点,线段PM的垂直平分线交半径MQ于点C,当M点在圆上运动时,点C的轨迹为曲线C(1)求曲线C方程;(2)已知直线l:x=8,A、B是曲线C上的两点,且不在x轴上,,垂足为,,垂足为,若D(3,0),且的面积是△ABD面积的5倍,求△ABD面积的最大值20.(12分)如图,在四棱锥P-ABCD中,底面ABCD是一个直角梯形,其中∠BAD=90°,AB∥DC,PA⊥底面ABCD,AB=AD=PA=2,DC=1,点M和点N分别为PA和PC的中点(1)证明:直线DM∥平面PBC;(2)求直线BM和平面BDN所成角的余弦值;(3)求二面角M-BD-N正弦值;(4)求点P到平面DBN距离;(5)设点N在平面BDM内的射影为点H,求线段HA的长21.(12分)已知直线l过定点(1)若直线l与直线垂直,求直线l的方程;(2)若直线l在两坐标轴上的截距相等,求直线l的方程22.(10分)在棱长为1的正方体ABCD-A1B1C1D1中,求平面ACD1的一个法向量.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据不等式组,作出可行域,数形结合即可求z的最小值.【详解】根据不等式组作出可行域如图,,则直线过A(-1,0)时,z取最小值.故选:A.2、A【解析】先求出等距抽样的组距,从而得到被抽到的是,从而求出答案.【详解】120件商品中抽8件,故,因为含有编号66的商品被抽到,故其他能被抽到的是,当时,,其他三个选项均不合要求,故选:A3、B【解析】根据等差数列和等比数列下标和的性质即可求解.【详解】为等比数列,,,,;为等差数列,,,,,∴.故选:B.4、B【解析】由离心率求出双曲线方程,由对称性设出点A,B,D坐标,求出坐标,求出答案.【详解】由题意得:,解得:,因为离心率,所以,,故双曲线方程为,设,则,,则,所以,则,解得:,故.故选:B5、A【解析】由已知及等差数列的通项公式得到公差d,再利用前n项和公式计算即可.【详解】设等差数列的公差为d,由已知,得,解得,所以.故选:A6、D【解析】由题可知:,,,故选;D7、B【解析】根据已知数据求样本中心点,由样本中心点在回归直线上,将其代入各选项的回归方程验证即可.【详解】由题设,,因为回归直线方程过样本点中心,A:,排除;B:,满足;C:,排除;D:,排除.故选:B8、C【解析】如下图所示,是底角为的等腰三角形,则有所以,所以又因为,所以,,所以所以答案选C.考点:椭圆的简单几何性质.9、D【解析】根据给定递推公式求出即可计算作答.【详解】因数列的前n项和为,,,则,,,所以.故选:D10、A【解析】先化简命题p,q,再根据是的一个充分不必要条件,由q求解.【详解】因为命题,或,又是的一个充分不必要条件,所以,解得,所以的取值范围是,故选:A11、C【解析】画出直观图,利用椎体体积公式进行求解.【详解】画出直观图,为四棱锥A-BCDE,其中BC=4,BE=2,AE=2,且BE,AE,DE两两垂直,故体积为.故选:C12、A【解析】由题意条件和,可建立一个关于的方程组,解出的值,然后再将带入到中去验证其是否满足在处有极小值,排除增根,即可得到答案.【详解】由题意可得,则,解得,或.当,时,.由,得;由,得.则在上单调递增,在上单调递减,故在处有极大值5,不符合题意.当,时,.由,得;由,得.则在上单调递减,在上单调递增,故在处有极小值5,符合题意,从而故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、(1)众数;平均数,中位数.(2).【解析】(1)按“众数,平均数,中位数”的公式求解.(2)由频率分布直方图得到各区间的频率,再用古典概型求解.【小问1详解】众数取频率分布直方图中最高矩形对应区间的中点75;平均数;因为,所以中位数在区间上,且中位数【小问2详解】由频率分布直方图得出在区间40,50)和90,100内的成绩样本数据分别有4个和2个,从6个样本选2个共有个结果,记事件A=“调查对象来自不同分组”,结果有所以.14、【解析】对递推关系多递推一次,再相减,可得,再验证是否满足;【详解】∵①时,②①-②得,时,满足上式,.故答案为:.【点睛】数列中碰到递推关系问题,经常利用多递推一次再相减的思想方法求解.15、【解析】求得函数的导数,得到且,再结合直线的点斜式,即可求解.【详解】由题意,函数,可得,则且,所以在点处切线方程是,即故答案为:.16、【解析】先求出,求出导函数及,进而求出切线方程.【详解】∵,∴,又,∴在处的切线方程为,即故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)根据已知递推关系式再写一式,然后两式相减,由等差数列、等比数列的定义即可求解;(2)根据已知递推关系式再写一式,然后两式相减,求出,最后利用错位相减法即可得答案.【小问1详解】解:因为,,所以,,得,所以是以2为首项2为公差的等差数列,是以1为首项2为公差的等差数列,所以,,所以;因为,所以,又由得,所以是以2为首项2为公比的等比数列,所以.【小问2详解】解:当时,,当时,,得,即,记,则,,则.18、(1)(2)在和内为减函数,在和内为增函数【解析】(1)对求导得,因为在处取得极值,所以,即,解得;(2)由(1)得,,故,令,解得或,当时,,故为减函数,当时,,故为增函数,当时,,故为减函数,当时,,故为增函数,综上所知:和是函数单调减区间,和是函数的单调增区间.19、(1)(2)【解析】(1)由定义法求出曲线C的方程;(2)先判断出直线AB过定点H(2,0)或H(4,0).当AB过定点H(4,0),求出最大;当H(2,0)时,可设直线AB:.用“设而不求法”表示出,不妨设(),利用函数的单调性求出△ABD面积的最大值.【小问1详解】因为线段PM的垂直平分线交半径MQ于点C,所以,所以,符合椭圆的定义,所以点C的轨迹为以P、Q为焦点的椭圆,其中,所以,所以曲线C的方程为.【小问2详解】不妨设直线l:x=8交x轴于G(8,0),直线AB交x轴于H(h,0),则,.因为,,,所以.又因为的面积是△ABD面积的5倍,所以.因为G(8,0),D(3,0),所以,所以H(2,0)或H(4,0).当H(4,0)时,则H与A(或H与B)重合,不妨设H与A重合,此时,,要使△ABD面积最大,只需B在短轴顶点时,=2最大,所以最大;当H(2,0)时,要想构成三角形ABD,直线AB的斜率不为0,可设直线AB:.设,则,消去x可得:,所以,,,所以.不妨设(),则,由对勾函数的性质可知,在上单调递减,所以当t=4时,,此时最大综上所述,△ABD面积的最大值为.【点睛】(1)“设而不求”是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题;(2)解析几何中最值计算方法有两类:①几何法:利用几何图形求最值;②代数法:表示为函数,利用函数求最值.20、(1)证明见解析(2)(3)(4)(5)【解析】(1)以为原点,建立空间直角坐标系,利用向量法,证明与平面的法向量垂直,从而证明直线平面(2)求出平面的法向量,利用向量法,求出直线和平面所成角的余弦值(3)求出平面的法向量和平面的法向量,利用向量法,求出二面角的正弦值(4)求出的坐标,再求出平面的法向量,利用向量法,求出点到平面的距离;(5)设点在平面内的射影为点,从而表示出的坐标,求出到平面的距离,列出方程组,求出点坐标,从而求出的长度.【小问1详解】四棱锥,底面是一个直角梯形,,平面,所以为原点,为轴,为轴,为轴,建立空间直角坐标系,,,,,,,,,设平面的法向量,所以,,取,则,所以,平面,所以直线平面.【小问2详解】,,,设平面的法向量,则,即,取,则,设直线与平面所成的角为,则,所以,所以直线与平面所成角的余弦值为.【小问3详解】设平面的法向量为,则,即,取,得,平面的法向量,设二面角的平面角为,则,所以,所以二面角的正弦值为.【小问4详解】,平面的法向量,所以点到平面的距离为.【小问5详解】设点在平面的射影为点,则,所以点到平面的距离为,根据,得解得,,,或者,,(舍)所以.21、(1)(2)或【解析】(1)求出直线的斜率可得l的斜率,再借助直线点斜式方程即可得解.(2)按直线l是否过原点分类讨论计算作答.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论