版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省南昌市新建县第一中学2026届高二数学第一学期期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列满足,,.设,若对于,都有恒成立,则最大值为A.3 B.4C.7 D.92.双曲线:(,)的左、右焦点分别为、,点在双曲线上,,,则的离心率为()A. B.2C. D.3.圆与圆的位置关系是()A.相离 B.内含C.相切 D.相交4.设的内角的对边分别为的面积,则()A. B.C. D.5.正数a,b满足,若不等式对任意实数x恒成立,则实数m的取值范围是A. B.C. D.6.椭圆的焦点坐标为()A.和 B.和C.和 D.和7.已知实数a,b满足,则下列不等式中恒成立的是()A. B.C. D.8.在空间直角坐标系下,点关于轴对称的点的坐标为()A. B.C. D.9.已知函数的图象如图所示,则其导函数的图象可能是()A. B.C. D.10.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有1个白球”和“都是红球”B.“至少有2个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”11.执行如图所示的程序框图,若输入的的值为3,则输出的的值为()A.3 B.6C.9 D.1212.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤”意思是:“现有一根金杖,长5尺,头部1尺,重4斤;尾部1尺,重2斤;若该金杖从头到尾每一尺重量构成等差数列,其中重量为,则的值为()A.4 B.12C.15 D.18二、填空题:本题共4小题,每小题5分,共20分。13.函数的图象在点处的切线的方程是______.14.已知直线与双曲线交于两点,则该双曲线的离心率的取值范围是______15.命题“若,则二元一次不等式表示直线的右上方区域(包含边界)”的条件:_________,结论:_____________,它是_________命题(填“真”或“假”).16.已知等比数列的前项和为,若,,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在梯形中,,,四边形为矩形,且平面,.(1)求证:平面;(2)点在线段含端点上运动,当点在什么位置时,平面与平面所成锐二面角最大,并求此时二面角的余弦值.18.(12分)如图,直四棱柱的底面是菱形,,,直线与平面ABCD所成角的正弦值为.E,F分别为、的中点.(1)求证:平面BED;(2)求直线与平面FAC所成角的正弦值.19.(12分)已知是等差数列,是各项都为正数的等比数列,,再从①;②;③这三个条件中选择___________,___________两个作为已知.(1)求数列的通项公式;(2)求数列的前项和.20.(12分)求满足下列条件的圆锥曲线方程的标准方程.(1)经过点,两点的椭圆;(2)与双曲线-=1有相同的渐近线且经过点的双曲线.21.(12分)总书记指出:“我们既要绿水青山,也要金山银山.”新能源汽车环保、节能,以电代油,减少排放,既符合我国的国情,也代表了世界汽车产业发展的方向.工业部表示,到2026届中国的汽车总销量将达到3500万辆,并希望新能源汽车至少占总销量的五分之一.江苏某新能源公司年初购入一批新能源汽车充电桩,每台16200元,第一年每台设备的维修保养费用为1100元,以后每年增加400元,每台充电桩每年可给公司收益8100元(1)每台充电桩第几年开始获利?(2)每台充电桩在第几年时,年平均利润最大22.(10分)【阅读材料1】我们在研究两个变量之间的相关关系时,往往先选取若干个样本点(),(),……,(),将样本点画在平面直角坐标系内,就得到样本的散点图.观察散点图,如果所有样本点都落在某一条直线附近,变量之间就具有线性相关关系,如果所有的样本点都落在某一非线性函数图象附近,变量之间就有非线性相关关系.在统计学中经常选择线性或非线性(函数)回归模型来刻画相关关系,并且可以用适当的方法求出回归模型的方程,还常用相关指数R2来刻画回归的效果,相关指数R2的计算公式为:当R2越大时,回归方程的拟合效果越好;当R2越小时,回归方程的拟合效果越差,R2是常用的选择模型的指标之一,在实际应用中应该尽量选择R2较大的回归模型.【阅读材料2】2021年6月17日9时22分,我国酒泉卫星发射中心用长征二号F遥十二运载火箭,成功将神舟十二号载人飞船送入预定轨道,顺利将聂海胜、刘伯明、汤洪胺3名航天员送入太空,发射取得圆满成功,这标志着中国人首次进入自己的空间站.某公司负责生产的A型材料是神舟十二号的重要零件,该材料应用前景十分广泛,该公司为了将A型材料更好地投入商用,拟对A型材料进行应用改造,根据市场调研与模拟,得到应用改造投入x(亿元)与产品的直接收益y(亿元)的数据统计如下:序号123456789101112x2346810132122232425y1522274048546068.56867.56665当0<x≤13时,建立了与的两个回归模型:模型①:;模型②:;当x>13时,确定y与x满足的线性回归直线方程为.根据以上阅读材料,解答以下问题:(1)根据下列表格中的数据,比较当0<x≤13时模型①,②的相关指数R2的大小,并选择拟合效果更好的模型.回归模型模型①模型②回归方程79.1320.2(2)当应用改造的投入为20亿元时,以回归直线方程为预测依据,计算公司的收益约为多少.附:①若最小二乘法求得回归直线方程为,则;②③,当时,.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】整理数列的通项公式有:,结合可得数列是首项为,公比为的等比数列,则,,原问题即:恒成立,当时,,即>3,综上可得:的最大值为3.本题选择A选项点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项2、C【解析】根据双曲线定义、余弦定理,结合题意,求得关系,即可求得离心率.【详解】根据题意,作图如下:不妨设,则,,①;在△中,由余弦定理可得:,代值得:,②;联立①②两式可得:;在△和△中,由,可得:,整理得:,③;联立②③可得:,又,故可得:,则,则,故离心率为.故选:C.3、D【解析】先由圆的方程得出两圆的圆心坐标和半径,求出两圆心间的距离与两半径之和与差比较可得答案.【详解】圆的圆心为,半径为圆的圆心为,半径为两圆心间的距离为由,所以两圆相交.故选:D4、A【解析】利用三角形面积公式、二倍角正弦公式有,再由三角形内角的性质及余弦定理化简求即可.【详解】由,∴,在中,,∴,解得.故选:A.5、A【解析】利用基本不等式求得的最小值,把问题转化为恒成立的类型,求解的最大值即可.【详解】,,且a,b为正数,,当且仅当,即时,,若不等式对任意实数x恒成立,则对任意实数x恒成立,即对任意实数x恒成立,,,故选:A【点睛】本题主要考查了恒成立问题,基本不等式求最值,二次函数求最值,属于中档题.6、D【解析】本题是焦点在x轴的椭圆,求出c,即可求得焦点坐标.【详解】,可得焦点坐标为和.故选:D7、D【解析】利用特殊值排除错误选项,利用函数单调性证明正确选项.【详解】时,,但,所以A选项错误.时,,但,所以B选项错误.时,,但,所以C选项错误.在上递增,所以,即D选项正确.故选:D8、C【解析】由空间中关于坐标轴对称点坐标的特征可直接得到结果.【详解】关于轴对称的点的坐标不变,坐标变为相反数,关于轴对称的点为.故选:C.9、A【解析】根据原函数图象判断出函数单调性,由此判断导函数的图象.【详解】原函数在上从左向右有增、减、增,个单调区间;在上递减.所以导函数在上从左向右应为:正、负、正;在上应为负.所以A选项符合.故选:A10、C【解析】结合互斥事件与对立事件的概念,对选项逐个分析可选出答案.【详解】对于选项A,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C.【点睛】本题考查了互斥事件和对立事件的定义的运用,考查了学生对知识的理解和掌握,属于基础题.11、A【解析】模拟执行程序框图,根据输入数据,即可求得输出数据.【详解】当时,不满足,故,即输出的的值为.故选:.12、C【解析】先求出公差,再利用公式可求总重量.【详解】设头部一尺重量为,其后每尺重量依次为,由题设有,,故公差为.故中间一尺的重量为所以这5项和为.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求导,求得,,根据直线的点斜式方程求得答案.【详解】因为,,所以切线的斜率,切线方程是,即.故答案为:.14、【解析】分析可知,由可求得结果.【详解】双曲线的渐近线方程为,由题意可知,.故答案为:.15、①.②.二元一次不等式表示直线的右上方区域(包含边界)③.真【解析】由二元一次不等式的意义可解答问题.【详解】因为,二元一次不等式所表示的区域如下图所示:所以在的条件下,二元一次不等式表示直线的右上方区域(包含边界),此命题是真命题.故答案为:;二元一次不等式表示直线的右上方区域(包含边界);真16、【解析】设等比数列的公比为,根据已知条件求出的值,由此可得出的值.【详解】设等比数列的公比为,则,整理可得,,解得,因此,.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)点与点重合时,二面角的余弦值为【解析】(1)先利用平面几何知识和余弦定理得到及各边长度,利用线面平行的性质和判定定理得到线面垂直,再利用线线平行得到线面垂直;(2)建立空间直角坐标系,设,写出相关点的坐标,得到相关向量的坐标,利用平面的法向量夹角求出二面角的余弦值,再通过二次函数的最值进行求解.【小问1详解】证明:在梯形中,因为,,又因为,所以,,所以,即,解得,,所以,即.因为平面,平面,所以,而平面平面,所以平面.因为,所以平面.【小问2详解】解:分别以直线为轴,轴,轴建立如图所示的空间直角坐标系(如图所示),设,则,所以,设为平面的一个法向量,由得,取,则,又是平面的一个法向量,设平面与平面所成锐二面角为,所以因为,所以当时,有最小值为,所以点与点重合时,平面与平面所成二面角最大,此时二面角的余弦值为.18、(1)证明见解析(2)【解析】(1)证明垂直于平面BED内的两条相交直线,即可得到答案;(2)分别以OB,OC,OE为x轴,y轴,z轴,建立直角坐标系,平面FAC的一个法向量为,代入向量的夹角公式,即可得到答案;【小问1详解】∵ABCD为菱形,∴,设AC与BD的交点为O,则OE为的中位线,∴.由题意得平面ABCD,∴平面ABCD,而AC平面ABCD中,∴.又,∴平面BED.小问2详解】∵ABCD为菱形,,∴为正三角形,∴.∵平面ABCD,∴与平面ABCD所成角,由,得,所以.如图,分别以OB,OC,OE为x轴,y轴,z轴,建立直角坐标系,则,,,,,,,设平面FAC的法向量为,则由可得,取,故可得平面FAC的一个法向量为,记直线与平面FAC的夹角为,则19、答案见解析【解析】(1)根据题设条件可得关于基本量的方程组,求解后可得的通项公式.(2)利用公式法可求数列的前项和.【详解】解:选择条件①和条件②(1)设等差数列的公差为,∴解得:,.∴,.(2)设等比数列的公比为,,∴解得,.设数列的前项和为,∴.选择条件①和条件③:(1)设等差数列的公差为,∴解得:,.∴.(2),设等比数列的公比为,.∴,解得,.设数列的前项和为,∴.选择条件②和条件③:(1)设等比数列的公比为,,∴,解得,,.设等差数列的公差为,∴,又,故.∴.(2)设数列的前项和为,由(1)可知.【点睛】方法点睛:等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题20、(1);(2)【解析】(1)由题意可得,,从而可求出椭圆的标准方程,(2)由题意设双曲线的共渐近线方程为,再将的坐标代入方程可求出的值,从而可求出双曲线方程【小问1详解】因为,所以P、Q分别是椭圆长轴和短轴上的端点,且椭圆的焦点在x轴上,所以,所以椭圆的标准方程为.【小问2详解】设与双曲线共渐近线的方程为,代入点,解得m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 遗体防腐整容师岗前考核试卷及答案
- 《国际金融》测试题附答案
- 全国兽医考试试题及答案
- 医师考核法律法规(医院法律法规考试试题和答案)
- 安全考试试卷及答案大全
- 土建工程师面试试题(含答案)
- 营销培训试题及答案大全
- 消防安全技术综合能力测试题及答案
- 高频领导力协会面试题及答案
- 护士急诊急救试题及答案
- 行业规范标准汇报
- 印刷行业安全培训班课件
- 《慢性胃炎诊疗》课件
- 北京市延庆区2026届八年级物理第一学期期末达标测试试题含解析
- 继电器性能测试及故障诊断方案
- 酒店清欠协议书模板模板
- 长者探访义工培训
- 地下室结构加固技术方案
- 人教版高一必修二英语单词表
- 2026年高考数学一轮复习周测卷及答案解析:第9周 数列的概念、等差与等比数列
- 电厂清洁生产管理制度
评论
0/150
提交评论