北京市汇文中学2026届高二上数学期末质量跟踪监视模拟试题含解析_第1页
北京市汇文中学2026届高二上数学期末质量跟踪监视模拟试题含解析_第2页
北京市汇文中学2026届高二上数学期末质量跟踪监视模拟试题含解析_第3页
北京市汇文中学2026届高二上数学期末质量跟踪监视模拟试题含解析_第4页
北京市汇文中学2026届高二上数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市汇文中学2026届高二上数学期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列满足,,则()A. B.C. D.2.已知点,,直线:与线段相交,则实数的取值范围是()A.或 B.或C. D.3.已知则是的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式解集是A. B.C. D.5.为了调查全国人口的寿命,抽查了11个省(市)的2500名城镇居民,这2500名城镇居民的寿命的全体是()A.总体 B.个体C.样本 D.样本容量6.设是等比数列,则“对于任意的正整数n,都有”是“是严格递增数列”()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.已知双曲线,则双曲线M的渐近线方程是()A. B.C. D.8.若任取,则x与y差的绝对值不小于1的概率为()A. B.C. D.9.曲线与曲线()的()A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等10.设命题,则为()A. B.C. D.11.已知直线与直线平行,且直线在轴上的截距比在轴上的截距大,则直线的方程为()A. B.C. D.12.已知直四棱柱的棱长均为,则直线与侧面所成角的正切值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知为抛物线:的焦点,为抛物线上在第一象限的点.若为的中点,为抛物线的顶点,则直线斜率的最大值为______.14.已知正数、满足,则的最大值为__________15.某位同学参加物理、化学、政治科目的等级考,依据以往成绩估算该同学在物理、化学、政治科目等级中达的概率分别为假设各门科目考试的结果互不影响,则该同学等级考至多有1门学科没有获得的概率为___________.16.从某校随机抽取某次数学考试100分以上(含100分,满分150分)的学生成绩,将他们的分数数据绘制成如图所示频率分布直方图.若共抽取了100名学生的成绩,则分数在内的人数为___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)新冠疫情下,有一学校推出了食堂监管力度的评价与食品质量的评价系统,每项评价只有合格和不合格两个选项,师生可以随时进行评价,某工作人员利用随机抽样的方法抽取了200位师生的信息,发现对监管力度满意的占75%,对食品质量满意的占60%,其中对监管力度和食品质量都满意的有80人.(1)完成列联表,试问:是否有99%的把握判断监管力度与食品质量有关联?监督力度情况食品质量情况对监督力度满意对监督力度不满意总计对食品质量满意80对食品质量不满意总计200(2)为了改进工作作风,针对抽取的200位师生,对监管力度不满意的人抽取3位征求意见,用X表示3人中对监管力度与食品质量都不满意的人数,求X的分布列与均值.参考公式:,其中.参考数据:①当时,有90%的把握判断变量A、B有关联;②当时,有95%的把握判断变量A、B有关联;③当时,有99%的把握判断变量A、B有关联.18.(12分)在①,②,③这三个条件中任选一个,补充在下面横线上,并解答.在中,内角,,的对边分别为,,,且___________.(1)求角的大小;(2)已知,,点在边上,且,求线段的长.注:如果选择多个条件分别解答,按第一个解答计分.19.(12分)已知数列满足,,数列前项和为.(1)求数列,的通项公式;(2)表示不超过的最大整数,如,设的前项和为,令,求证:.20.(12分)已知椭圆:经过点,设右焦点F,椭圆上存在点Q,使QF垂直于x轴且.(1)求椭圆的方程;(2)过点的直线与椭圆交于D,G两点.是否存在直线使得以DG为直径的圆过点E(-1,0)?若存在,求出直线的方程,若不存在,说明理由.21.(12分)已知椭圆的一个顶点恰好是抛物线的焦点,椭圆C的离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)从椭圆C在第一象限内的部分上取横坐标为2的点P,若椭圆C上有两个点A,B使得的平分线垂直于坐标轴,且点B与点A的横坐标之差为,求直线AP的方程.22.(10分)已知函数(1)求在点处的切线方程(2)求直线与曲线围成的封闭图形的面积

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据递推关系依次求出即可.【详解】,,,,,.故选:A.2、A【解析】由可求出直线过定点,作出图象,求出和,数形结合可得或,即可求解.【详解】由可得:,由可得,所以直线:过定点,由可得,作出图象如图所示:,,若直线与线段相交,则或,解得或,所以实数的取值范围是或,故选:A.3、A【解析】先解不等式,再比较集合包含关系确定选项.【详解】因为,所以是的充分不必要条件,选A.【点睛】本题考查解含绝对值不等式、解一元二次不等式以及充要关系判定,考查基本分析求解能力,属基础题.4、B【解析】设.由,得,故函数在上单调递减.由为奇函数,所以.不等式等价于,即,结合函数的单调性可得,从而不等式的解集为,故答案为B.考点:利用导数研究函数的单调性.【方法点晴】本题考查了导数的综合应用及函数的性质的应用,构造函数的思想,阅读分析问题的能力,属于中档题.常见的构造思想是使含有导数的不等式一边变为,即得,当是形如时构造;当是时构造,在本题中令,(),从而求导,从而可判断单调递减,从而可得到不等式的解集5、C【解析】由样本的概念即知.【详解】由题意可知,这2500名城镇居民的寿命的全体是样本.6、C【解析】根据严格递增数列定义可判断必要性,分类讨论可判断充分性.【详解】若是严格递增数列,显然,所以“对于任意的正整数n,都有”是“是严格递增数列”必要条件;对任意的正整数n都成立,所以中不可能同时含正项和负项,,即,或,即,当时,有,即,是严格递增数列,当时,有,即,是严格递增数列,所以“对于任意的正整数n,都有”是“是严格递增数列”充分条件故选:C7、C【解析】由双曲线的方程直接求出见解析即可.【详解】由双曲线,则其渐近线方程为:故选:C8、C【解析】根据题意,在平面直角坐标系中分析以及与差的绝对值不小于1所对应的平面区域,求出其面积,由几何概型公式计算可得答案.【详解】根据题意,,其对应的区域为正方形,其面积,若与差的绝对值不小于1,即,即或,对应的区域为图中的阴影部分,其面积为,故与差的绝对值不小于1的概率.故选:C9、D【解析】分别求出两椭圆的长轴长、短轴长、离心率、焦距,即可判断.【详解】曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为;曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为.对照选项可知:焦距相等.故选:D.10、D【解析】利用含有一个量词的命题的否定的定义判断.【详解】因为命题是全称量词命题,所以其否定是存在量词命题,即,故选:D11、A【解析】分析可知直线不过原点,可设直线的方程为,其中且,利用斜率关系可求得实数的值,化简可得直线的方程.【详解】若直线过原点,则直线在两坐标轴上的截距相等,不合乎题意,设直线的方程为,其中且,则直线的斜率为,解得,所以,直线的方程为,即.故选:A.12、D【解析】根据题意把直线与侧面所成角的正切值转化为在直角三角形中的正切值,即可求出答案.【详解】由题意可知直四棱柱如下图所示:取的中点设为点,连接,在直四棱柱中,面,面,,在四边形中,,,故且.面,面,面,.故直线与侧面所成角的正切值为.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】由题意,可得,设,,,根据是线段的中点,求出的坐标,可得直线的斜率,利用基本不等式即可得结论【详解】解:由题意,可得,设,,,,是线段的中点,则,,,当且仅当时取等号,直线的斜率的最大值为1故答案为:114、【解析】直接利用均值不等式得到答案.【详解】,当即时等号成立.故答案为【点睛】本题考查了均值不等式,意在考查学生的计算能力.15、【解析】考虑3门或者2门两种情况,计算概率得到答案.【详解】.故答案为:.16、30【解析】根据频率分布直方图中所以小矩形面积和为1,可得a值,根据总人数和频率,即可得答案.【详解】因为频率分布直方图中所以小矩形面积和为1,所以,解得,所以分数在内的人数为.故答案为:30三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)列联表见解析,有99%的把握判断监管力度与食品质量有关联;(2)X的分布列见解析,X的期望为【解析】(1)根据给定条件完善列联表,再计算的观测值并结合给定数据即可作答.(2)求出X的可能值及各个值对应的概率列出X的分布列,再计算期望作答.【小问1详解】对监管力度满意的有,对食品质量满意的有,列联表如下:对监督力度满意对监督力度不满意总计对食品质量满意8040120对食品质量不满意701080总计15050200则的观测值为:,所以有99%的把握判断监管力度与食品质量有关联.【小问2详解】由(1)及已知得,X的所有可能值为:0,1,2,3,,,,,X的分布列为:X0123PX的期望为:.【点睛】易错点睛:独立性检验得出的结论是带有概率性质的,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释18、(1)(2)【解析】(1)若选①,则根据正弦定理,边化角,结合二倍角公式,求得,可得答案;若选②,则根据余弦定理和三角形面积公式,将化简,求得,可得答案;若选③,则切化弦,化简可得到的值,求得答案;(2)由余弦定理求出,进而求得,设,,在中用余弦定理列出方程,求得答案.【小问1详解】若选①,则根据正弦定理可得:,由于,,故,则;若选②,则,即,则,而,故;若选③,则,即,则,而,故;【小问2详解】如图示:,故,故,在中,设,则,则,即,解得,或(舍去)故.19、(1),(2)证明见解析【解析】(1)利用累加法求通项公式,利用通项公式与前n项和公式的关系可求的通项公式;(2)求出并判断其范围,求出,利用裂项相消法求的前n项和即可证明.【小问1详解】由题可知,当n≥2时,=当n=1时,也符合上式,∴;当时,,当n=1时,也符合上式,∴;【小问2详解】由(1)知,∴,∵,;∵,,,,,∴设为数列的前n项和,则.20、(1);(2)存在,或.【解析】(1)根据题意,列出的方程组,求得,则椭圆方程得解;(2)对直线的斜率进行讨论,当斜率存在时,设出直线方程,联立椭圆方程,利用韦达定理,转化题意为,求解即可.小问1详解】由题意,得,设,将代入椭圆方程,得,所以,解得,所以椭圆的方程为.【小问2详解】当斜率不存在时,即时,,为椭圆短轴两端点,则以为直径的圆为,恒过点,满足题意;当斜率存在时,设,,,由得:,,解得:,,若以为直径的圆过点,则,即,又,,,解得:,满足,即,此时直线的方程为综上,存在直线使得以为直径的圆过点,的方程为或21、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由题意可得关于参数的方程,解之即可得到结果;(Ⅱ)设直线AP的斜率为k,联立方程结合韦达定理可得A点坐标,同理可得B点坐标,结合横坐标之差为,可得直线方程.【详解】(Ⅰ)由抛物线方程可得焦点为,则椭圆C的一个顶点为,即.由,解得.∴椭圆C的标准方程是;(Ⅱ)由题可知点,设直线AP的斜率为k,由题意知,直线BP的斜率为,设,,直线AP的方程为,即.联立方程组消去y得.∵P,A为直线AP与椭圆C的交点,∴,即.把换成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论