山东省潍坊市教科所2026届高一上数学期末检测模拟试题含解析_第1页
山东省潍坊市教科所2026届高一上数学期末检测模拟试题含解析_第2页
山东省潍坊市教科所2026届高一上数学期末检测模拟试题含解析_第3页
山东省潍坊市教科所2026届高一上数学期末检测模拟试题含解析_第4页
山东省潍坊市教科所2026届高一上数学期末检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省潍坊市教科所2026届高一上数学期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.对于两条不同的直线l1,l2,两个不同的平面α,β,下列结论正确的A.若l1∥α,l2∥α,则l1∥l2 B.若l1∥α,l1∥β,则α∥βC若l1∥l2,l1∥α,则l2∥α D.若l1∥l2,l1⊥α,则l2⊥α2.若定义运算,则函数的值域是()A.(-∞,+∞) B.[1,+∞)C.(0.+∞) D.(0,1]3.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行两步恰竿齐,五尺板高离地……”某教师根据这首词设计一题:如图,已知,,则弧的长()A. B.C. D.4.已知集合,则A B.C. D.5.若在是减函数,则的最大值是A. B.C. D.6.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来琢磨函数图像的特征.我们从这个商标中抽象出一个图象如图,其对应的函数可能是()A. B.C. D.7.下列函数中,既是奇函数又在定义域上是增函数是()A. B.C. D.8.已知幂函数过点,则在其定义域内()A.为偶函数 B.为奇函数C.有最大值 D.有最小值9.若,且为第二象限角,则()A. B.C. D.10.设扇形的周长为,面积为,则扇形的圆心角的弧度数是()A.1 B.2C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的图象上关于轴对称的点恰有9对,则实数的取值范围_________.12.函数的部分图象如图所示.则函数的解析式为______13.用表示函数在闭区间上的最大值.若正数满足,则的最大值为__________14.已知扇形的圆心角为,其弧长是其半径的2倍,则__________15.在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是______.16.设,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(以30天计),每件的销售价格(单位:元)与时间x(单位:天)的函数关系近似满足,日销售量(单位:件)与时间x(单位:天)的部分数据如下表所示:x10152025305055605550(1)给出以下四个函数模型:①;②;③;④请你根据上表中的数据,从中选择你认为最合适的一种函数模型来描述日销售量与时间x的变化关系,并求出该函数的解析式;(2)设该工艺品的日销售收入为(单位:元),求的最小值18.计算:(1)(2)19.已知函数在上的最小值为(1)求的单调递增区间;(2)当时,求的最大值以及此时x的取值集合20.计算求值:(1)(2)若,求的值.21.已知定义在上的函数,其中,且(1)试判断函数的奇偶性,并证明你的结论;(2)解关于的不等式

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】详解】A.若l1∥α,l2∥α,则两条直线可以相交可以平行,故A选项不正确;B.若l1∥α,l1∥β,则α∥β,当两条直线平行时,两个平面可以是相交的,故B不正确;C.若l1∥l2,l1∥α,则l2∥α,有可能在平面内,故C不正确;D.若l1∥l2,l1⊥α,则l2⊥α,根据课本的判定定理得到是正确的.故答案为D.2、D【解析】作出函数的图像,结合图像即可得出结论.【详解】由题意分析得:取函数与中的较小的值,则,如图所示(实线部分):由图可知:函数的值域为:.故选:D.【点睛】本题主要考查了指数函数的性质和应用.考查了数形结合思想.属于较易题.3、C【解析】求出长后可得,再由弧长公式计算可得【详解】由题意,解得,所以,,所以弧的长为故选:C4、C【解析】分析:先解指数不等式得集合A,再根据偶次根式被开方数非负得集合B,最后根据补集以及交集定义求结果.详解:因为,所以,因为,所以因此,选C.点睛:合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图5、A【解析】因为,所以由得因此,从而的最大值为,故选:A.6、A【解析】由图象知函数的定义域排除选项选项B、D,再根据不成立排除选项C,即可得正确选项.【详解】由图知的定义域为,排除选项B、D,又因为当时,,不符合图象,所以排除C,故选:A【点睛】思路点睛:排除法是解决函数图象问题的主要方法,根据函数的定义域、与坐标轴的交点、函数值的符号、单调性、奇偶性等,从而得出正确结果.7、D【解析】根据基本初等函数的单调性以及单调性的性质、函数奇偶性的定义逐一判断四个选项【详解】对于A:为偶函数,在定义域上不是增函数,故A不正确;对于B:为奇函数,在上单调递增,但在定义域上不是增函数,故B不正确;对于C:既不是奇函数也不是偶函数,故C不正确;对于D:,所以是奇函数,因为是上的增函数,故D正确;故选:D8、A【解析】设幂函数为,代入点,得到,判断函数的奇偶性和值域得到答案.【详解】设幂函数为,代入点,即,定义域为,为偶函数且故选:【点睛】本题考查了幂函数的奇偶性和值域,意在考查学生对于函数性质的综合应用.9、A【解析】由已知利用诱导公式求得,进一步求得,再利用三角函数的基本关系式,即可求解【详解】由题意,得,又由为第二象限角,所以,所以故选:A.10、B【解析】根据扇形的周长为,面积为,得到,解得l,r,代入公式求解.【详解】因为扇形的周长为,面积为,所以,解得,所以,所以扇形的圆心角的弧度数是2故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】求出函数关于轴对称的图像,利用数形结合可得到结论.【详解】若,则,,设为关于轴对称的图像,画出的图像,要使图像上有至少9个点关于轴对称,即与有至少9个交点,则,且满足,即则,解得,故答案为【点睛】解分段函数或两个函数对称性的题目时,可先将一个函数的对称图像求出,利用数形结合的方式得出参数的取值范围;遇到题目中指对函数时,需要讨论底数的范围,分别画出图像进行讨论.12、【解析】由图象可得出函数的最小正周期,可求得的值,再由结合的取值范围可求得的值,即可得出函数的解析式.【详解】函数的最小正周期为,则,则,因为且函数在处附近单调递减,则,得,因,所以.所以故答案为:.13、【解析】对分类讨论,利用正弦函数的图象求出和,代入,解出的范围,即可得解.【详解】当,即时,,,因为,所以不成立;当,即时,,,不满足;当,即时,,,由得,得,得;当,即时,,,由得,得,得,得;当,即时,,,不满足;当,即时,,,不满足.综上所述:.所以得最大值为故答案为:【点睛】关键点点睛:对分类讨论,利用正弦函数的图象求出和是解题关键.14、-1【解析】由已知得,所以则,故答案.15、60°【解析】取BC的中点E,则,则即为所求,设棱长为2,则,16、2【解析】先求出,再求的值即可【详解】解:由题意得,,所以,故答案为:2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)选择模型②:,;(2)441.【解析】(1)根据表格数据的变化趋势选择函数模型,再将数据代入解析式求参数值,即可得解析式.(2)由题设及(1)所得解析式求的解析式,再由分段函数的性质,结合分式型函数最值的求法求的最小值【小问1详解】由表格数据知,当时间x变换时,先增后减,而①;③;④都是单调函数,所以选择模型②:,由,可得,解得,由,解得,,所以日销售量与时间x的变化的关系式为【小问2详解】由(2)知:,所以,即,当,时,由基本不等式,可得,当且仅当时,即时等号成立,当,时,为减函数,所以函数的最小值为,综上,当时,函数取得最小值44118、(1)(2)【解析】(1)根据分数指数幂的运算法则计算可得;(2)根据对数的运算法则及对数恒等式计算可得;【小问1详解】解:【小问2详解】解:19、(1);(2)最大值为,此时x的取值集合为.【解析】(1)利用二倍角公式化简函数,再利用余弦函数性质列式计算作答.(2)利用余弦函数性质直接计算作答.【小问1详解】依题意,,令,,解得,所以的单调递增区间为.小问2详解】由(1)知,当时,,,解得,因此,,当,,即,时,取得最大值1,则取得最大值,所以的最大值为,此时x的取值集合为.20、(1)(2)【解析】(1)利用指数和对数运算法则直接计算可得结果;(2)分子

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论