版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省惠州市实验中学2026届高一上数学期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,既是偶函数又在区间上单调递减的是A. B.C. D.2.设函数,若恰有2个零点,则实数的取值范围是()A. B.C. D.3.已知函数,,若恰有2个零点,则实数a的取值范围是()A. B.C. D.4.已知函数,,其中,若,,使得成立,则()A. B.C. D.5.正方形的边长为,它是水平放置的一个平面图形的直观图,则原图形的周长是()A. B.C. D.6.在长方体中,,,则该长方体的外接球的表面积为A. B.C. D.7.已知a=20.1,b=log43.6,c=log30.3,则()A.a>b>c B.b>a>cC.a>c>b D.c>a>b8.玉溪某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产件,则平均仓储时间为天,且每件产品每天的仓储费用为1元,为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品A.60件 B.80件C.100件 D.120件9.下列函数中,是奇函数且在其定义域内单调递增的是A. B.C. D.10.某食品的保鲜时间(单位:小时)与储存温度(单位:)满足函数关系(为自然对数的底数,为常数)若该食品在的保鲜时间是384小时,在的保鲜时间是24小时,则该食品在的保险时间是()小时A.6 B.12C.18 D.24二、填空题:本大题共6小题,每小题5分,共30分。11.若,则的值为___________.12.已知样本,,…,的平均数为5,方差为3,则样本,,…,的平均数与方差的和是_____13.已知定义在区间上的奇函数满足:,且当时,,则____________.14.已知,则__________.15.已知函数是奇函数,当时,,若,则m的值为______.16.如果方程x2+(m-1)x+m2-2=0的两个实根一个小于-1,另一个大于1,那么实数m的取值范围是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象过点,且满足(1)求函数的解析式:(2)求函数在上最小值;(3)若满足,则称为函数的不动点,函数有两个不相等且正的不动点,求t的取值范围18.已知函数.(1)求不等式的解集;(2)函数,若存在,使得成立,求实数的取值范围;(3)若函数,讨论函数的零点个数.19.函数的最小值为.(1)求;(2)若,求a及此时的最大值.20.已知,,,,求.21.已知圆的方程为,是坐标原点.直线与圆交于两点(1)求的取值范围;(2)过点作圆的切线,求切线所在直线的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】因为函数是奇函数,所以选项A不正确;因为函为函数既不是奇函数,也不是偶函数,所以选项B不正确;函数图象抛物线开口向下,对称轴是轴,所以此函数是偶函数,且在区间上单调递减,所以,选项C正确;函数虽然是偶函数,但是此函数在区间上是增函数,所以选项D不正确;故选C考点:1、函数的单调性与奇偶性;2、指数函数与对数函数;3函数的图象2、B【解析】当时,在上单调递增,,当时,令得或(1)若,即时,在上无零点,此时,∴在[1,+∞)上有两个零点,符合题意;(2)若,即时,在(−∞,1)上有1个零点,∴在上只有1个零点,①若,则,∴,解得,②若,则,∴在上无零点,不符合题意;③若,则,∴在上无零点,不符合题意;综上a的取值范围是.选B点睛:解答本题的关键是对实数a进行分类讨论,根据a的不同取值先判断函数在(−∞,1)上的零点个数,在此基础上再判断函数在上的零点个数,看是否满足有两个零点即可3、B【解析】利用数形结合的方法,作出函数的图象,简单判断即可.【详解】依题意,函数的图象与直线有两个交点,作出函数图象如下图所示,由图可知,要使函数的图象与直线有两个交点,则,即.故选:B.【点睛】本题考查函数零点问题,掌握三种等价形式:函数零点个数等价于方程根的个数等价于两个函数图象交点个数,属基础题.4、B【解析】首先已知等式变形为,构造两个函数,,问题可转化为这两个函数的值域之间的包含关系【详解】∵,,∴,又,∴,∴由得,,设,,则,,,∴的值域是值域的子集∵,时,,显然,(否则0属于的值域,但)∴,∴(*)由上讨论知同号,时,(*)式可化为,∴,,当时,(*)式可化为,∴,无解综上:故选:B【点睛】本题考查函数恒成立问题,解题关键是掌握转化与化归思想.首先是分离两个变量,然后构造新函数,问题转化为两个函数值域之间的包含关系.其次通过已知关系确定函数值域的形式(或者参数的一个范围),在这个范围解不等式才能非常简单地求解5、B【解析】根据斜二测画法画直观图的性质,即平行于轴的线段长度不变,平行于轴的线段的长度减半,结合图形求得原图形的各边长,可得周长【详解】因为直观图正方形的边长为1cm,所以,所以原图形为平行四边形OABC,其中,,,所以原图形的周长6、B【解析】由题求出长方体的体对角线,则外接球的半径为体对角线的一半,进而求得答案【详解】由题意可得,长方体体对角线为,则该长方体的外接球的半径为,因此,该长方体的外接球的表面积为.【点睛】本题考查外接球的表面积,属于一般题7、A【解析】直接判断范围,比较大小即可.【详解】,,,故a>b>c.故选:A.8、B【解析】确定生产件产品的生产准备费用与仓储费用之和,可得平均每件的生产准备费用与仓储费用之和,利用基本不等式,即可求得最值【详解】解:根据题意,该生产件产品的生产准备费用与仓储费用之和是这样平均每件的生产准备费用与仓储费用之和为(为正整数)由基本不等式,得当且仅当,即时,取得最小值,时,每件产品的生产准备费用与仓储费用之和最小故选:【点睛】本题考查函数的构建,考查基本不等式的运用,属于中档题,运用基本不等式时应该注意取等号的条件,才能准确给出答案,属于基础题9、C【解析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案【详解】解:根据题意,依次分析选项:对于A,y=sinx,是正弦函数,在定义域上不是增函数;不符合题意;对于B,y=tanx,为正切函数,在定义域上不是增函数,不符合题意;对于C,y=x3,是奇函数且在其定义域内单调递增,符合题意;对于D,y=ex为指数函数,不是奇函数,不符合题意;故选C【点睛】本题考查函数的奇偶性与单调性的判定,关键是掌握常见函数的奇偶性与单调性10、A【解析】先阅读题意,再结合指数运算即可得解.【详解】解:由题意有,,则,即,则,即该食品在的保险时间是6小时,故选A.【点睛】本题考查了指数幂的运算,重点考查了解决实际问题的能力,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1或【解析】由诱导公式、二倍角公式变形计算【详解】,所以或,时,;时,故答案为:1或12、23【解析】利用期望、方差的性质,根据已知数据的期望和方差求新数据的期望和方差.【详解】由题设,,,所以,.故平均数与方差的和是23.故答案为:23.13、【解析】由函数已知的奇偶性可得、,再由对称性进而可得周期性得解.【详解】因为在区间上是奇函数,所以,,,得,因为,,所以的周期为..故答案为:.14、3【解析】由同角三角函数商数关系及已知等式可得,应用诱导公式有,即可求值.【详解】由题设,,可得,∴.故答案为:315、【解析】由奇函数可得,则可得,解出即可【详解】因为是奇函数,,所以,即,解得故答案为:【点睛】本题考查利用奇偶性求值,考查已知函数值求参数16、(0,1)【解析】结合二次函数的性质得得到,在-1和1处的函数值均小于0即可.【详解】结合二次函数的性质得得到,在-1和1处的函数值均小于0即可,实数m满足不等式组解得0<m<1.故答案为(0,1)【点睛】这个题目考查了二次函数根的分布的问题,结合二次函数的图像的性质即可得到结果,题型较为基础.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】(1)根据f(x)图像过点,且满足列出关于m和n的方程组即可求解;(2)讨论对称轴与区间的位置关系,即可求二次函数的最小值;(3)由题可知方程x=g(x)有两个正根,根据韦达定理即可求出t范围.【小问1详解】∵的图象过点,∴①又,∴②由①②解,,∴;【小问2详解】,,当,即时,函数在上单调递减,∴;当,即时,函数在上单调递减,在单调递增,∴;当时,函数在上单调递增,∴综上,【小问3详解】设有两个不相等的不动点、,且,,∴,即方程有两个不相等的正实根、∴,解得18、(1)(2)(3)答案见解析【解析】(1)根据题意条件,分别求解的定义域和解对数不等式即可完成求解;(2)通过题意条件,找到和两函数值域的关系,分别求解出对应的值域,通过分类讨论即可完成求解;(3)通过题意条件,通过讨论的值,分别作出对应的函数图像,借助换元,观察函数图像的交点状况,从而完成求解.【小问1详解】函数,由,可得,即的定义域为;不等式,所以,即为,解得,则原不等式的解为;【小问2详解】函数,若存在,使得成立,则和在上的值域的交集不为空集;由(1)可知:时,显然单调递减,所以其值域为;若,则在上单调递减,所以的值域为,此时只需,即,所以;若,则在递增,可得的值域为,此时与的交集显然为空集,不满足题意;综上,实数的范围是;小问3详解】由,得,令,则,画出的图象,当,只有一个,对应3个零点,当时,,此时,由,得在,三个分别对应一个零点,共3个,在时,,三个分别对应1个,1个,3个零点,共5个,综上所述:当时,只有1个零点,当或时,有3个零点,当时,有5个零点.【点睛】方法点睛:对于“存在,使得成立”,需要将其转化成两函数值域的关系,即两个函数的值域有交集,需根据函数的具体范围进行适时的分类讨论即可.19、(1)(2),的最大值5【解析】(1)通过配方得,再通过对范围的讨论,利用二次函数的单调性即可求得;(2)由于,对分与进行讨论,即可求得的值及的最大值【小问1详解】∵,∴,且,∴若,即,当时,;若,即,当时,;若,即,当时,.综上所述,.【小问2详解】∵,∴若,则有,得,与矛盾;若,则有,即,解得或(舍),∴时,,即,∵,∴当时,取得最大值5.20、【解析】由已知结合商数关系、平方关系求,根据的范围及平方关系求,最后由结合差角余弦公式求值即可.【详解】因为,所以,又,可得或,而,所以,由,且,解得,因为,,则,所以,所以.21、(1);(2)或【解析】(1)直线与圆交于两点,即直线与圆相交,转化成圆心到直线距离小于半径,利用公式解不等式;(2)过某点求圆的切线,分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医学检验一季度三基试题附答案
- 医院三基考试模考模拟试题附完整答案详解
- 《中级个人理财》-中级银行从业试题预测试卷附答案详解
- 高中休育面试题及答案大全
- 仓库出库题库及答案模板
- 中小学教师资格证《综合素质》试题及答案
- 史无前例考试试题及答案
- 基金从业资格考试基金法规与职业道德相关真题试卷含答案
- 2025年事业单位卫生类专业知识试卷(护理学)试题(附答案)
- 管理心理学AB卷及答案(全文)
- 2026贵州省黔晟国有资产经营有限责任公司面向社会招聘中层管理人员2人备考考试试题及答案解析
- 2026中国电信四川公用信息产业有限责任公司社会成熟人才招聘备考题库及答案详解一套
- 消费者权益保护与投诉处理手册(标准版)
- 南京航空航天大学飞行器制造工程考试试题及答案
- 2023-2024学年江西省赣州市章贡区文清实验学校数学六年级第一学期期末经典模拟试题含答案
- DB36-T 1158-2019 风化壳离子吸附型稀土矿产地质勘查规范
- 城市道路照明路灯工程施工组织方案资料
- 雷达液位计参考课件
- 手术标本管理护理质量控制考核标准
- GB 30981-2020 工业防护涂料中有害物质限量
- 钢结构厂房布置及设备
评论
0/150
提交评论