2026届辽宁省抚顺市“抚顺六校协作体”高一上数学期末综合测试试题含解析_第1页
2026届辽宁省抚顺市“抚顺六校协作体”高一上数学期末综合测试试题含解析_第2页
2026届辽宁省抚顺市“抚顺六校协作体”高一上数学期末综合测试试题含解析_第3页
2026届辽宁省抚顺市“抚顺六校协作体”高一上数学期末综合测试试题含解析_第4页
2026届辽宁省抚顺市“抚顺六校协作体”高一上数学期末综合测试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届辽宁省抚顺市“抚顺六校协作体”高一上数学期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数是上的增函数,则实数的取值范围为()A. B.C. D.2.已知是第二象限角,且,则点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限3.若函数满足,则A. B.C. D.4.已知函数是偶函数,且,则()A. B.0C.2 D.45.已知函数fx=3xA.(0,1) B.(1,2)C.(2,3) D.(3,4)6.已知全集U=R,集合,,则集合()A. B.C. D.7.函数(且)的图像恒过定点()A. B.C. D.8.设是两个不同的平面,是一条直线,以下命题正确的是A.若,则 B.若,则C.若,则 D.若,则9.函数f(x)=在[—π,π]的图像大致为A. B.C. D.10.若,,则的值为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.不等式的解为______12.若,则_____13.若集合有且仅有两个不同的子集,则实数=_______;14.函数的最小正周期为,且.当时,则函数的对称中心__________;若,则值为__________.15.已知指数函数的解析式为,则函数的零点为_________16.茎叶图表示的是甲,乙两人在5次综合测评中的成绩,记甲,乙的平均成绩分别为a,b,则a,b的大小关系是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若函数的定义域为,集合,若存在非零实数使得任意都有,且,则称为上的-增长函数.(1)已知函数,函数,判断和是否为区间上的增长函数,并说明理由;(2)已知函数,且是区间上的-增长函数,求正整数的最小值;(3)如果是定义域为的奇函数,当时,,且为上的增长函数,求实数的取值范围.18.某校高二(5)班在一次数学测验中,全班名学生的数学成绩的频率分布直方图如下,已知分数在分的学生数有14人.(1)求总人数和分数在的人数;(2)利用频率分布直方图,估算该班学生数学成绩的众数和中位数各是多少?(3)现在从分数在分的学生(男女生比例为1:2)中任选2人,求其中至多含有1名男生的概率.19.已知函数.求:(1)的值域;(2)的零点;(3)时x的取值范围20.设函数,且,函数(1)求的解析式;(2)若方程-b=0在[-2,2]上有两个不同的解,求实数b的取值范围21.如图,ABCD是一块边长为100米的正方形地皮,其中ATS是一座半径为90米的扇形小山,P是弧TS上一点,其余部分都是平地.现有一开发商想在平地上建造一个两边分别落在BC与CD上的长方形停车场PQCR,求长方形停车场PQCR面积的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据分段函数是上的增函数,则每一段都为增函数,且右侧的函数值不小于左侧的函数值求解.【详解】函数是上增函数,所以,解得,所以实数的取值范围是故选:A.2、B【解析】根据所在象限可判断出,,从而可得答案.【详解】为第二象限角,,,则点位于第二象限.故选:B.3、A【解析】,所以,选A.4、D【解析】由偶函数定义可得,代入可求得结果.【详解】为偶函数,,,故选:D5、C【解析】根据导数求出函数在区间上单调性,然后判断零点区间.【详解】解:根据题意可知3x和-log2∴f(x)在(0,+∞而f(1)=3-0=3>0f(2)=f(3)=1-∴有函数的零点定理可知,fx零点的区间为(2故选:C6、D【解析】依次计算集合,最后得出结果即可.【详解】,,或,故.故选:D.7、C【解析】本题可根据指数函数的性质得出结果.【详解】当时,,则函数的图像恒过定点,故选:C.8、C【解析】对于A、B、D均可能出现,而对于C是正确的9、D【解析】先判断函数的奇偶性,得是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案【详解】由,得是奇函数,其图象关于原点对称.又.故选D【点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养.采取性质法或赋值法,利用数形结合思想解题10、A【解析】由两角差的正切公式展开计算可得【详解】解:,,则,故选A【点睛】本题考查两角差的正切公式:,对应还应该掌握两角和的正切公式,及正弦余弦公式.本题是基础二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据幂函数的性质,分类讨论即可【详解】将不等式转化成(Ⅰ),解得;(Ⅱ),解得;(Ⅲ),此时无解;综上,不等式的解集为:故答案为:12、【解析】首先求函数,再求的值.【详解】设,则所以,即,,.故答案为:13、或.【解析】根据集合的子集个数确定出方程解的情况,由此求解出参数值.【详解】因为集合仅有两个不同子集,所以集合中仅有个元素,当时,,所以,满足要求;当时,,所以,此时方程解为,即,满足要求,所以或,故答案:或.14、①.②.【解析】根据最小正周期以及关于的方程求解出的值,根据对称中心的公式求解出在上的对称中心;先求解出的值,然后根据角的配凑结合两角差的正弦公式求解出的值.【详解】因为最小正周期为,所以,又因为,所以,所以或,又因为,所以,所以,所以,令,所以,又因为,所以,所以对称中心为;因为,,所以,若,则,不符合,所以,所以,所以,故答案为:;.15、1【解析】解方程可得【详解】由得,故答案为:116、【解析】分别计算出甲,乙的平均分,从而可比较a,b的大小关系.【详解】易知甲的平均分为,乙的平均分为,所以.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)是,不是,理由见解析;(2);(3).【解析】(1)利用给定定义推理判断或者反例判断而得;(2)把恒成立的不等式等价转化,再求函数最小值而得解;(3)根据题设条件,写出函数f(x)的解析式,再分段讨论求得,最后证明即为所求.【详解】(1)g(x)定义域R,,g(x)是,取x=-1,,h(x)不是,函数是区间上的增长函数,函数不是;(2)依题意,,而n>0,关于x的一次函数是增函数,x=-4时,所以n2-8n>0得n>8,从而正整数n的最小值为9;(3)依题意,,而,f(x)在区间[-a2,a2]上是递减的,则x,x+4不能同在区间[-a2,a2]上,4>a2-(-a2)=2a2,又x∈[-2a2,0]时,f(x)≥0,x∈[0,2a2]时,f(x)≤0,若2a2<4≤4a2,当x=-2a2时,x+4∈[0,2a2],f(x+4)≤f(x)不符合要求,所以4a2<4,即-1<a<1.因为:当4a2<4时,①x+4≤-a2,f(x+4)>f(x)显然成立;②-a2<x+4<a2时,x<a2-4<-3a2,f(x+4)=-(x+4)>-a2,f(x)=x+2a2<-a2,f(x+4)>f(x);③x+4>a2时,f(x+4)=(x+4)-2a2>x+2a2≥f(x),综上知,当-1<a<1时,为上的增长函数,所以实数a的取值范围是(-1,1).【点睛】(1)以函数为背景定义的创新试题,认真阅读,分析转化成常规函数解决;(2)分段函数解析式中含参数,相应区间也含有相同的这个参数,要结合函数图象综合考察,并对参数进行分类讨论.18、(1)4;(2)众数和中位数分别是107.5,110;(3)﹒【解析】(1)先求出分数在内的学生的频率,由此能求出该班总人数,再求出分数在内的学生的频率,由此能求出分数在内的人数(2)利用频率分布直方图,能估算该班学生数学成绩的众数和中位数(3)由题意分数在内有学生6名,其中男生有2名.设女生为,,,,男生为,,从6名学生中选出2名,利用列举法能求出其中至多含有1名男生的概率【小问1详解】分数在内的学生的频率为,∴该班总人数为分数在内的学生的频率为:,分数在内的人数为【小问2详解】由频率直方图可知众数是最高的小矩形底边中点的横坐标,即为设中位数为,,众数和中位数分别是107.5,110【小问3详解】由题意分数在内有学生名,其中男生有2名设女生为,,,,男生为,,从6名学生中选出2名的基本事件为:,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,共15种,其中至多有1名男生的基本事件共14种,其中至多含有1名男生的概率为19、(1);(2)-1,2;(3)【解析】(1)利用配方法求二次函数值域即可;(2)由的零点即是的根,再解方程即可;(3)由“三个二次”的关系,即是函数的图象在y轴下方,观察图像即可得解.【详解】解:(1)将函数化为完全平方式,得,故函数的值域;(2)的零点即是的根,令,解方程得方程的根为-1和2,故得函数的零点-1,2;(3)由图得即是函数图象在y轴下方,时x的取值范围即在两根之间,故x的取值范围是.【点睛】本题考查了二次函数值域的求法,重点考查了“三个二次”的关系,属中档题.20、(1),(2)【解析】(1);本题求函数解析式只需利用指数的运算性质求出a的值即可,(2)对于同时含有的表达式,通常可以令进行换元,但换元的过程中一定要注意新元的取值范围,换元后转化为我们熟悉的一元二次的关系,从而解决问题试题解析:解:(1)∵,且∴∵∴(2)法一:方程为令,则-且方程为在有两个不同的解设,两函数图象在内有两个交点由图知时,方程有两不同解.法二:方程为,令,则∴方程在上有两个不同的解.设解得考点:求函数的解析式,求参数的取值范围【方法点睛】求函数解析式的主要方法有待定系数法,换元法及赋值消元法等;已知函数的类型(如一次函数,二次函数,指数函数等),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论