上海市松江区市级名校2026届数学高二上期末学业质量监测模拟试题含解析_第1页
上海市松江区市级名校2026届数学高二上期末学业质量监测模拟试题含解析_第2页
上海市松江区市级名校2026届数学高二上期末学业质量监测模拟试题含解析_第3页
上海市松江区市级名校2026届数学高二上期末学业质量监测模拟试题含解析_第4页
上海市松江区市级名校2026届数学高二上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市松江区市级名校2026届数学高二上期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则()A.1 B.2C.3 D.52.如图是一个程序框图,执行该程序框图,则输出的n值是()A.2 B.3C.4 D.53.已知F是双曲线C:的一个焦点,点P在C的渐近线上,O是坐标原点,,则的面积为()A.1 B.C. D.4.已知,且直线始终平分圆的周长,则的最小值是()A.2 B.C.6 D.165.在试验“甲射击三次,观察中靶的情况”中,事件A表示随机事件“至少中靶1次”,事件B表示随机事件“正好中靶2次”,事件C表示随机事件“至多中靶2次”,事件D表示随机事件“全部脱靶”,则()A.A与C是互斥事件 B.B与C是互斥事件C.A与D是对立事件 D.B与D是对立事件6.甲、乙两人下棋,甲获胜的概率为30%,甲不输的概率为80%,则甲、乙下成平局的概率()A.50% B.30%C.10% D.60%7.在等比数列中,,则等于()A. B.C. D.8.已知数列中,,(),则等于()A. B.C. D.29.已知A(3,2),点F为抛物线的焦点,点P在抛物线上移动,为使取得最小值,则点P的坐标为()A.(0,0) B.(2,2)C. D.10.双曲线的两个焦点坐标是()A.和 B.和C.和 D.和11.在空间直角坐标系中,点关于轴的对称点为点,则点到直线的距离为()A. B.C. D.612.已知实数,满足,则的最小值是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若数列的前n项和,则其通项公式________14.在正方体中,则直线与平面所成角的正弦值为__________15.已知在时有极值0,则的值为____16.已知四面体中,,分别在,上,且,,若,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左焦点为,上顶点为,直线与椭圆的另一个交点为A(1)求点A的坐标;(2)过点且斜率为的直线与椭圆交于,两点(均与A,不重合),过点与轴垂直的直线分别交直线,于点,,证明:点,关于轴对称18.(12分)已知为坐标原点,椭圆的左右焦点分别为,,为椭圆的上顶点,以为圆心且过的圆与直线相切.(1)求椭圆的标准方程;(2)已知直线交椭圆于两点.(ⅰ)若直线的斜率等于,求面积的最大值;(ⅱ)若,点在上,.证明:存在定点,使得为定值.19.(12分)已知抛物线的焦点F,C上一点到焦点的距离为5(1)求C方程;(2)过F作直线l,交C于A,B两点,若线段AB中点的纵坐标为-1,求直线l的方程20.(12分)如图,在长方体中,底面是边长为1的正方形,侧棱长为2,且动点P在线段AC上运动(1)若Q为的中点,求点Q到平面的距离;(2)设直线与平面所成角为,求的取值范围21.(12分)已知函数.(1)求函数f(x)的最小正周期;(2)当时,求函数f(x)的值域.22.(10分)如图,在四棱锥中,底面为的中点(1)求证:平面;(2)若,求平面与平面的夹角大小

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用导数的定义,以及运算法则,即可求解.【详解】,,所以,所以故选:C2、B【解析】程序框图中的循环结构,一般需重复计算,根据判断框中的条件,确定何时终止循环,输出结果.【详解】初始值:,当时,,进入循环;当时,,进入循环;当时,,终止循环,输出的值为3.故选:B3、B【解析】根据给定条件求出,再利用余弦定理求出即可计算作答.【详解】双曲线C:中,,其渐近线,它与x轴的夹角为,即,在中,,由余弦定理得:,即,整理得:,解得,所以面积为.故选:B4、B【解析】由已知直线过圆心得,再用均值不等式即可.【详解】由已知直线过圆心得:,,当且仅当时取等.故选:B.5、C【解析】根据互斥事件、对立事件的定义即可求解.【详解】解:因为A与C,B与C可能同时发生,故选项A、B不正确;B与D不可能同时发生,但B与D不是事件的所有结果,故选项D不正确;A与D不可能同时发生,且A与D为事件的所有结果,故选项C正确故选:C.6、A【解析】根据甲获胜和甲、乙两人下成平局是互斥事件即可求解.【详解】甲不输有两种情况:甲获胜或甲、乙两人下成平局,甲获胜和甲、乙两人下成平局是互斥事件,所以甲、乙两人下成平局的概率为.故选:A.7、C【解析】根据,然后与,可得,最后简单计算,可得结果.【详解】在等比数列中,由所以,又,所以所以故选:C【点睛】本题考查等比数列的性质,重在计算,当,在等差数列中有,在等比数列中,灵活应用,属基础题.8、D【解析】由已知条件可得,,…,即是周期为3的数列,即可求.【详解】由题设,知:,,,…,∴是周期为3的数列,而的余数为1,∴.故选:D.9、B【解析】设点P到准线的距离为,根据抛物线的定义可知,即可根据点到直线的距离最短求出【详解】如图所示:设点P到准线的距离为,准线方程为,所以,当且仅当点为与抛物线的交点时,取得最小值,此时点P的坐标为故选:B10、C【解析】由双曲线标准方程可得到焦点所在轴及半焦距的长,进而得到两个焦点坐标.【详解】双曲线中,,则又双曲线焦点在y轴,故双曲线的两个焦点坐标是和故选:C11、C【解析】按照空间中点到直线的距离公式直接求解.【详解】由题意,,,的方向向量,,则点到直线的距离为.故选:C.12、A【解析】将化成,即可求出的最小值【详解】由可化为,所以,解得,因此最小值是故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由和计算【详解】由题意,时,,所以故答案为:14、【解析】建立空间直角坐标系,利用空间向量夹角公式进行求解即可【详解】建立如图所示的空间直角坐标系,设该正方体的棱长为1,所以,,,,因此,,,设平面的法向量为:,所以有:,令,所以,因此,设与的夹角为,直线与平面所成角为,所以有,故答案为:15、11【解析】由题知,且,所以,得或,①当时,,此时,,所以函数单调递增无极值,舍去②当时,,此时,是函数的极值点,符合题意,∴16、【解析】连接,根据题意,结合空间向量加减法运算求解即可.【详解】解:连接∵四面体中,,分别在,上,且,∴∴∴.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)先求出直线的方程,联立直线与椭圆,求出A点坐标;(2)设出直线方程,联立椭圆方程,用韦达定理得到两根之和,两根之积,求出两点的纵坐标,证明出,即可证明关于轴对称.【小问1详解】由题意得,,所以直线方程为,与椭圆方程联立得解得或,当时,,所以【小问2详解】设,,的方程为,联立消去得,则,直线的方程为,设,则,直线的方程为,设,则,因为,即,所以点,关于轴对称18、(1);(2)(ⅰ);(ⅱ).【解析】(1)求出后可得椭圆的标准方程.(2)(ⅰ)设直线的方程为:,,联立直线方程和椭圆方程,利用韦达定理、弦长公式可求面积表达式,利用基本不等式可求面积的最大值.(ⅱ)利用韦达定理化简可得,从而可得的轨迹为圆,故可证存在定点,使得为定值.【详解】(1)由题意知:,,又,则以为圆心且过的圆的半径为,故,所以椭圆的标准方程为:.(2)(ⅰ)设直线的方程为:,将代入得:,所以且,故.又,点到直线的距离,所以,等号当仅当时取,即当时,的面积取最大值为.(ⅱ)显然直线的斜率一定存在,设直线的方程为:,,由(ⅰ)知:所以,所以,解得,,直线过定点或,所以D在以OZ为直径的圆上,该圆的圆心为或,半径等于,所以存在定点或,使得为定值.【点睛】方法点睛:求椭圆的标准方程,关键是基本量的确定,方法有待定系数法、定义法等.直线与圆锥曲线的位置关系中的定点、定值、最值问题,一般可通过联立方程组并消元得到关于或的一元二次方程,再把要求解的目标代数式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有或,最后利用韦达定理把关系式转化为若干变量的方程(或函数),从而可求定点、定值、最值问题.19、(1);(2).【解析】(1)由抛物线的定义,结合已知有求p,写出抛物线方程.(2)由题意设直线l为,联立抛物线方程,应用韦达定理可得,由中点公式有,进而求k值,写出直线方程.【详解】(1)由题意知:抛物线的准线为,则,可得,∴C的方程为.(2)由(1)知:,由题意知:直线l的斜率存在,令其方程为,∴联立抛物线方程,得:,,若,则,而线段AB中点的纵坐标为-1,∴,即,得,∴直线l的方程为.【点睛】关键点点睛:(1)利用抛物线定义求参数,写出抛物线方程;(2)由直线与抛物线相交,以及相交弦的中点坐标值,应用韦达定理、中点公式求直线斜率,并写出直线方程.20、(1)1(2)【解析】(1)以AB,AD,为x,y,z轴正向建立直角坐标系,利用空间向量法求出平面的法向量,结合点到平面的距离的向量求法计算即可;(2)设点,,进而得出的坐标,利用向量的数量积即可列出线面角正弦值的表达式,结合二次函数的性质即可得出结果.【小问1详解】由题意,分别以AB,AD,为x,y,z轴正向建立直角坐标系,于是,,,,,设平面法向量所以,解得,,令得,,设点Q到平面的距离为d,【小问2详解】由(1)可知,平面的法向量,由P点在线段AC上运动可设点,于是,,所以,的取值范围是21、(1);(2).【解析】(1)先通过降幂公式和辅助角公式将函数化简,进而求出周期;(2)求出的范围,进而结合三角函数的性质求得答案.【小问1详解】,函数最小正周期为.【小问2详解】当时,,,∴,即函数的值域为.22、(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论