版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河北省邯郸市高二上数学期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若正三棱柱的所有棱长都相等,D是的中点,则直线AD与平面所成角的正弦值为A. B.C. D.2.已知,,,则点C到直线AB的距离为()A.3 B.C. D.3.已知点,点关于原点的对称点为,则()A. B.C. D.4.过点且斜率为的直线方程为()A. B.C. D.5.设等比数列的前项和为,若,则()A. B.C. D.6.椭圆的长轴长为()A. B.C. D.7.抛物线的顶点在原点,对称轴是x轴,点在抛物线上,则抛物线的方程为()A. B.C. D.8.已知实数x,y满足,则的取值范围是()A. B.C. D.9.已知函数在上可导,且,则与的大小关系为A. B.C. D.不确定10.已知函数(为自然对数的底数),若的零点为,极值点为,则()A. B.0C.1 D.211.已知直线与圆相交于,两点,则的取值范围为()A. B.C. D.12.设是等差数列,是其公差,是其前n项的和.若,,则下列结论不正确的是()A. B.C. D.与均为的最大值二、填空题:本题共4小题,每小题5分,共20分。13.已知,动点满足,则点的轨迹方程为___________.14.记为等差数列的前n项和.若,则__________15.曲线在处的切线斜率为___________.16.某厂将从64名员工中用系统抽样的方法抽取4名参加2011年职工劳技大赛,将这64名员工编号为1~64,若已知8号、24号、56号在样本中,那么样本中最后一个员工的号码是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是等差数列的前n项和,且,(1)求数列的通项公式;(2)令,求数列的前n项和18.(12分)已知抛物线,过点作直线(1)若直线的斜率存在,且与抛物线只有一个公共点,求直线的方程(2)若直线过抛物线的焦点,且交抛物线于两点,求弦长19.(12分)如图,在三棱柱中,平面ABC,,,,点D,E分别在棱和棱上,且,,M为棱中点(1)求证:;(2)求直线AB与平面所成角的正弦值20.(12分)已知数列满足,,且成等比数列(1)求的值和的通项公式;(2)设,求数列的前项和21.(12分)在中,内角A、B、C的对边分别为a、b、c,满足(1)求A的大小;(2)若,的面积为,求的周长22.(10分)已知圆内有一点,过点作直线交圆于、两点(1)当经过圆心时,求直线的方程;(2)当弦的长为时,求直线的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】建立空间直角坐标系,得到相关点的坐标后求出直线的方向向量和平面的法向量,借助向量的运算求出线面角的正弦值【详解】取AC的中点为坐标原点,建立如图所示的空间直角坐标系设三棱柱的棱长为2,则,∴设为平面的一个法向量,由故令,得设直线AD与平面所成角为,则,所以直线AD与平面所成角的正弦值为故选A【点睛】空间向量的引入为解决立体几何问题提供了较好的方法,解题时首先要建立适当的坐标系,得到相关点的坐标后借助向量的运算,将空间图形的位置关系或数量关系转化为向量的运算处理.在解决空间角的问题时,首先求出向量夹角的余弦值,然后再转化为所求的空间角.解题时要注意向量的夹角和空间角之间的联系和区别,避免出现错误2、D【解析】应用空间向量的坐标运算求在上投影长及的模长,再应用勾股定理求点C到直线AB的距离.【详解】因为,,所以设点C到直线AB的距离为d,则故选:D3、C【解析】根据空间两点间距离公式,结合对称性进行求解即可.【详解】因为点关于原点的对称点为,所以,因此,故选:C4、B【解析】利用点斜式可得出所求直线的方程.【详解】由题意可知所求直线的方程为,即.故选:B.5、C【解析】利用等比数列前项和的性质,,,,成等比数列求解.【详解】解:因为数列为等比数列,则,,成等比数列,设,则,则,故,所以,得到,所以.故选:C.6、D【解析】由椭圆方程可直接求得.【详解】由椭圆方程知:,长轴长为.故选:D.7、B【解析】首先根据题意设出抛物线的方程,利用点在曲线上的条件为点的坐标满足曲线的方程,代入求得参数的值,最后得到答案.【详解】解:根据题意设出抛物线的方程,因为点在抛物线上,所以有,解得,所以抛物线的方程是:,故选:B.8、B【解析】实数,满足,通过讨论,得到其图象是椭圆、双曲线的一部分组成的图形,借助图象分析可得的取值就是图象上一点到直线距离范围的2倍,求出切线方程根据平行直线距离公式算出最小值,和最大值的极限值即可得出答案.【详解】因为实数,满足,所以当时,,其图象是位于第一象限,焦点在轴上的双曲线的一部分(含点),当时,其图象是位于第四象限,焦点在轴上的椭圆的一部分,当时,其图象不存在,当时,其图象是位于第三象限,焦点在轴上的双曲线的一部分,作出椭圆和双曲线的图象,其中图象如下:任意一点到直线的距离所以,结合图象可得的范围就是图象上一点到直线距离范围的2倍,双曲线,其中一条渐近线与直线平行,通过图形可得当曲线上一点位于时,取得最小值,无最大值,小于两平行线与之间的距离的倍,设与其图像在第一象限相切于点,由因为或(舍去)所以直线与直线的距离为此时,所以的取值范围是故选:B【点睛】三种距离公式:(1)两点间的距离公式:平面上任意两点间的距离公式为;(2)点到直线的距离公式:点到直线的距离;(3)两平行直线间的距离公式:两条平行直线与间的距离.9、B【解析】由,所以.10、C【解析】令可求得其零点,即的值,再利用导数可求得其极值点,即的值,从而可得答案【详解】解:,当时,,即,解得;当时,恒成立,的零点为又当时,为增函数,故在,上无极值点;当时,,,当时,,当时,,时,取到极小值,即的极值点,故选:C【点睛】本题考查利用导数研究函数的极值,考查函数的零点,考查分段函数的应用,突出分析运算能力的考查,属于中档题11、C【解析】求得直线恒过的定点,找出弦长取得最值的状态,利用弦长公式求解即可.【详解】因直线方程为:,整理得,故该直线恒过定点,又,故点在圆内,又圆的圆心为则,此时直线过圆心;当直线与直线垂直时,取得最小值,此时.故的取值范围为.故选:.12、C【解析】由已知条件可以得出,,,即可得公差,再利用等差数列的性质以及前n项的和的性质可判断每个选项的正误,进而可得正确选项.【详解】由可得,由可得,故选项B正确;由可得,因为公差,故选项A正确,,所以,故选项C不正确;由于是等差数列,公差,,,,所以都是的最大值,故选项D正确;所以选项C不正确,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】表示出、,根据题意,列出等式,化简整理即可得答案.【详解】,由题意得,所以整理可得,即.故答案为:.14、【解析】因为是等差数列,根据已知条件,求出公差,根据等差数列前项和,即可求得答案.【详解】是等差数列,且,设等差数列的公差根据等差数列通项公式:可得即:整理可得:解得:根据等差数列前项和公式:可得:.故答案:.【点睛】本题主要考查了求等差数列的前项和,解题关键是掌握等差数列的前项和公式,考查了分析能力和计算能力,属于基础题.15、##【解析】首先求得的导数,由导数的几何意义可得切线的斜率.【详解】因为函数的导数为,所以可得在处的切线斜率,故答案为:16、40【解析】结合系统抽样的抽样方法来确定最后抽取的号码.【详解】因为分段间隔为,故最后一个员工的号码为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设等差数列的首项、公差,由列出关于首项、公差的方程组,解方程组可得与的值,从而可得数列的通项公式;(2)由(1)可知,利用裂项相消法可求数列的前n项和.小问1详解】依题意:设等差数列的首项为,公差为,则解得所以数列的通项公式为【小问2详解】由(1)可知因为,所以,所以.18、(1)或;(2)8【解析】(1)根据题意设直线的方程为,联立,消去得,因为只有一个公共点,则求解.(2)抛物线的焦点为,设直线的方程为,联立,消去得,再根据过抛物线焦点的弦长公式求解.【详解】(1)设直线的方程为,联立,消去得,则,解得或,∴直线的方程为:或(2)抛物线的焦点为,则直线的方程为,设,联立,消去得,∴,∴【点睛】本题主要考查直线与抛物线的位置关系,还考查了运算求解的能力,属于中档题.19、(1)证明见解析;(2).【解析】(1)由线面垂直、等腰三角形的性质易得、,再根据线面垂直的判定及性质证明结论;(2)构建空间直角坐标系,确定相关点坐标,进而求的方向向量、面的法向量,应用空间向量夹角的坐标表示求直线与平面所成角的正弦值.【小问1详解】在三棱柱中,平面,则平面,由平面,则,,则,又为的中点,则,又,则平面,由平面,因此,.【小问2详解】以为原点,以,,为轴、轴、轴的正方向建立空间直角坐标系,如图所示,可得:,,,,,,.∴,,,,设为面的法向量,则,令得,设与平面所成角为,则,∴直线与平面所成角的正弦值为.20、(1);;(2)【解析】(1)由于,所以可得,再由成等比数列,列方程可求出,从而可求出的通项公式;(2)由(1)可得,然后利用错位相减法求【详解】解:(1)数列{an}满足,所以,所以a2+a3=a1+a2+d,由于a1=1,a2=1,所以a2+a3=2+d,a8+a9=2+7d,且a1,a2+a3,a8+a9成等比数列,所以,整理得d=1或2(1舍去)故an+2=an+2,所以n奇数时,an=n,n为偶数时,an=n﹣1所以数列{an}的通项公式为(2)由于,所以所以T2n=b1+b2+...+b2n=﹣20×12+20×22﹣22×32+22×42+...+[﹣22n﹣2•(2n﹣1)2]+22n﹣2•(2n)2,=20×(22﹣12)+22×(42﹣32)+...+22n﹣2•[(2n)2﹣(2n﹣1)2]=20×3+22×7+...+22n﹣2•(4n﹣1)①,所以,②,①﹣②得:﹣3T2n=20×3+22×4+...+22n﹣2×4﹣22n×(4n﹣1),=3+4×﹣22n×(4n﹣1),=,所以21、(1)(2)【解析】(1)通过正弦定理将边化为角的关系,可得,进而可得结果;(2)由面积公式得,结合余弦定理得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江国企招聘-2025舟山国际水产城招聘13人考试备考题库必考题
- 福建泉州石狮鸿山镇第二中心幼儿园招聘考试备考题库必考题
- 雅安市教育局所属事业单位雅安市教育科学研究院2025年公开选调事业人员的(1人)参考题库附答案
- 工学类专业前景
- 2026江苏南京大学YJ20260122物理学院博士后招聘1人备考题库附答案
- 2025重庆潼南区就业和人才中心公益岗招聘1人参考题库必考题
- 安远县2025年公开遴选部分机关事业单位工作人员【27人】参考题库必考题
- 2026陕西汉中市铁路中心医院招聘医学检验技师考试备考题库附答案
- 2026湖北省定向武汉大学选调生招录参考题库必考题
- 2025 小学五年级科学下册防火材料的燃点与阻燃机制课件
- 创新创业教育学习通超星期末考试答案章节答案2024年
- 苏教版六年级数学上册全套试卷
- 培训机构转课协议
- 河道治理、拓宽工程 投标方案(技术方案)
- 创客教室建设方案
- 政治审查表(模板)
- 《最奇妙的蛋》完整版
- SEMI S1-1107原版完整文档
- 内蒙古卫生健康委员会综合保障中心公开招聘8人模拟预测(共1000题)笔试备考题库及答案解析
- 2023年中级财务会计各章作业练习题
- 金属罐三片罐成型方法与罐型
评论
0/150
提交评论