江西省上饶市横峰中学、余干一中2026届数学高三上期末联考试题含解析_第1页
江西省上饶市横峰中学、余干一中2026届数学高三上期末联考试题含解析_第2页
江西省上饶市横峰中学、余干一中2026届数学高三上期末联考试题含解析_第3页
江西省上饶市横峰中学、余干一中2026届数学高三上期末联考试题含解析_第4页
江西省上饶市横峰中学、余干一中2026届数学高三上期末联考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省上饶市横峰中学、余干一中2026届数学高三上期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数z满足i•z=2+i,则z的共轭复数是()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i2.设集合,,则()A. B.C. D.3.设x、y、z是空间中不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“且”为真命题的是()A.③④ B.①③ C.②③ D.①②4.的展开式中的系数为()A.5 B.10 C.20 D.305.设集合,,则().A. B.C. D.6.已知集合,则为()A.[0,2) B.(2,3] C.[2,3] D.(0,2]7.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是()A. B. C. D.8.已知x,,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件9.已知a,b∈R,,则()A.b=3a B.b=6a C.b=9a D.b=12a10.袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是()A. B. C. D.11.已知甲盒子中有个红球,个蓝球,乙盒子中有个红球,个蓝球,同时从甲乙两个盒子中取出个球进行交换,(a)交换后,从甲盒子中取1个球是红球的概率记为.(b)交换后,乙盒子中含有红球的个数记为.则()A. B.C. D.12.已知菱形的边长为2,,则()A.4 B.6 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若在定义域内恒有,则实数的取值范围是__________.14.已知函数,若关于的方程在定义域上有四个不同的解,则实数的取值范围是_______.15.已知集合A=,B=,若AB中有且只有一个元素,则实数a的值为_______.16.已知,若,则a的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)随着时代的发展,A城市的竞争力、影响力日益卓著,这座创新引领型城市有望踏上向“全球城市”发起“冲击”的新征程.A城市的活力与包容无不吸引着无数怀揣梦想的年轻人前来发展,目前A城市的常住人口大约为1300万.近日,某报社记者作了有关“你来A城市发展的理由”的调查问卷,参与调查的对象年龄层次在25~44岁之间.收集到的相关数据如下:来A城市发展的理由人数合计自然环境1.森林城市,空气清新2003002.降水充足,气候怡人100人文环境3.城市服务到位1507004.创业氛围好3005.开放且包容250合计10001000(1)根据以上数据,预测400万25~44岁年龄的人中,选择“创业氛围好”来A城市发展的有多少人;(2)从所抽取选择“自然环境”作为来A城市发展的理由的300人中,利用分层抽样的方法抽取6人,从这6人中再选取3人发放纪念品.求选出的3人中至少有2人选择“森林城市,空气清新”的概率;(3)在选择“自然环境”作为来A城市发展的理由的300人中有100名男性;在选择“人文环境”作为来A城市发展的理由的700人中有400名男性;请填写下面列联表,并判断是否有的把握认为性别与“自然环境”或“人文环境”的选择有关?自然环境人文环境合计男女合计附:,.P()0.0500.0100.001k3.8416.63510.82818.(12分)在如图所示的几何体中,面CDEF为正方形,平面ABCD为等腰梯形,AB//CD,AB=2BC,点Q为AE的中点.(1)求证:AC//平面DQF;(2)若∠ABC=60°,AC⊥FB,求BC与平面DQF所成角的正弦值.19.(12分)已知椭圆经过点,离心率为.(1)求椭圆的方程;(2)经过点且斜率存在的直线交椭圆于两点,点与点关于坐标原点对称.连接.求证:存在实数,使得成立.20.(12分)已知函数,.(1)当为何值时,轴为曲线的切线;(2)用表示、中的最大值,设函数,当时,讨论零点的个数.21.(12分)如图,已知在三棱台中,,,.(1)求证:;(2)过的平面分别交,于点,,且分割三棱台所得两部分几何体的体积比为,几何体为棱柱,求的长.提示:台体的体积公式(,分别为棱台的上、下底面面积,为棱台的高).22.(10分)已知在中,角、、的对边分别为,,,,.(1)若,求的值;(2)若,求的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

两边同乘-i,化简即可得出答案.【详解】i•z=2+i两边同乘-i得z=1-2i,共轭复数为1+2i,选D.【点睛】的共轭复数为2、D【解析】

利用一元二次不等式的解法和集合的交运算求解即可.【详解】由题意知,集合,,由集合的交运算可得,.故选:D【点睛】本题考查一元二次不等式的解法和集合的交运算;考查运算求解能力;属于基础题.3、C【解析】

①举反例,如直线x、y、z位于正方体的三条共点棱时②用垂直于同一平面的两直线平行判断.③用垂直于同一直线的两平面平行判断.④举例,如x、y、z位于正方体的三个共点侧面时.【详解】①当直线x、y、z位于正方体的三条共点棱时,不正确;②因为垂直于同一平面的两直线平行,正确;③因为垂直于同一直线的两平面平行,正确;④如x、y、z位于正方体的三个共点侧面时,不正确.故选:C.【点睛】此题考查立体几何中线面关系,选择题一般可通过特殊值法进行排除,属于简单题目.4、C【解析】

由知,展开式中项有两项,一项是中的项,另一项是与中含x的项乘积构成.【详解】由已知,,因为展开式的通项为,所以展开式中的系数为.故选:C.【点睛】本题考查求二项式定理展开式中的特定项,解决这类问题要注意通项公式应写准确,本题是一道基础题.5、D【解析】

根据题意,求出集合A,进而求出集合和,分析选项即可得到答案.【详解】根据题意,则故选:D【点睛】此题考查集合的交并集运算,属于简单题目,6、B【解析】

先求出,得到,再结合集合交集的运算,即可求解.【详解】由题意,集合,所以,则,所以.故选:B.【点睛】本题主要考查了集合的混合运算,其中解答中熟记集合的交集、补集的定义及运算是解答的关键,着重考查了计算能力,属于基础题.7、C【解析】

根据程序框图的运行,循环算出当时,结束运行,总结分析即可得出答案.【详解】由题可知,程序框图的运行结果为31,当时,;当时,;当时,;当时,;当时,.此时输出.故选:C.【点睛】本题考查根据程序框图的循环结构,已知输出结果求条件框,属于基础题.8、D【解析】

,不能得到,成立也不能推出,即可得到答案.【详解】因为x,,当时,不妨取,,故时,不成立,当时,不妨取,则不成立,综上可知,“”是“”的既不充分也不必要条件,故选:D【点睛】本题主要考查了充分条件,必要条件的判定,属于容易题.9、C【解析】

两复数相等,实部与虚部对应相等.【详解】由,得,即a,b=1.∴b=9a.故选:C.【点睛】本题考查复数的概念,属于基础题.10、C【解析】

先确定摸一次中奖的概率,5个人摸奖,相当于发生5次试验,根据每一次发生的概率,利用独立重复试验的公式得到结果.【详解】从6个球中摸出2个,共有种结果,两个球的号码之和是3的倍数,共有摸一次中奖的概率是,5个人摸奖,相当于发生5次试验,且每一次发生的概率是,有5人参与摸奖,恰好有2人获奖的概率是,故选:.【点睛】本题主要考查了次独立重复试验中恰好发生次的概率,考查独立重复试验的概率,解题时主要是看清摸奖5次,相当于做了5次独立重复试验,利用公式做出结果,属于中档题.11、A【解析】分析:首先需要去分析交换后甲盒中的红球的个数,对应的事件有哪些结果,从而得到对应的概率的大小,再者就是对随机变量的值要分清,对应的概率要算对,利用公式求得其期望.详解:根据题意有,如果交换一个球,有交换的都是红球、交换的都是蓝球、甲盒的红球换的乙盒的蓝球、甲盒的蓝球交换的乙盒的红球,红球的个数就会出现三种情况;如果交换的是两个球,有红球换红球、蓝球换蓝球、一蓝一红换一蓝一红、红换蓝、蓝换红、一蓝一红换两红、一蓝一红换亮蓝,对应的红球的个数就是五种情况,所以分析可以求得,故选A.点睛:该题考查的是有关随机事件的概率以及对应的期望的问题,在解题的过程中,需要对其对应的事件弄明白,对应的概率会算,以及变量的可取值会分析是多少,利用期望公式求得结果.12、B【解析】

根据菱形中的边角关系,利用余弦定理和数量积公式,即可求出结果.【详解】如图所示,菱形形的边长为2,,∴,∴,∴,且,∴,故选B.【点睛】本题主要考查了平面向量的数量积和余弦定理的应用问题,属于基础题..二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据指数函数与对数函数图象可将原题转化为恒成立问题,凑而可知的图象在过原点且与两函数相切的两条切线之间;利用过一点的曲线切线的求法可求得两切线斜率,结合分母不为零的条件可最终确定的取值范围.【详解】由指数函数与对数函数图象可知:,恒成立可转化为恒成立,即恒成立,,即是夹在函数与的图象之间,的图象在过原点且与两函数相切的两条切线之间.设过原点且与相切的直线与函数相切于点,则切线斜率,解得:;设过原点且与相切的直线与函数相切于点,则切线斜率,解得:;当时,,又,满足题意;综上所述:实数的取值范围为.【点睛】本题考查恒成立问题的求解,重点考查了导数几何意义应用中的过一点的曲线切线的求解方法;关键是能够结合指数函数和对数函数图象将问题转化为切线斜率的求解问题;易错点是忽略分母不为零的限制,忽略对于临界值能否取得的讨论.14、【解析】

由题意可在定义域上有四个不同的解等价于关于原点对称的函数与函数的图象有两个交点,运用参变分离和构造函数,进而借助导数分析单调性与极值,画出函数图象,即可得到所求范围.【详解】已知定义在上的函数若在定义域上有四个不同的解等价于关于原点对称的函数与函数f(x)=lnx-x(x>0)的图象有两个交点,联立可得有两个解,即可设,则,进而且不恒为零,可得在单调递增.由可得时,单调递减;时,单调递增,即在处取得极小值且为作出的图象,可得时,有两个解.故答案为:【点睛】本题考查利用利用导数解决方程的根的问题,还考查了等价转化思想与函数对称性的应用,属于难题.15、2【解析】

利用AB中有且只有一个元素,可得,可求实数a的值.【详解】由题意AB中有且只有一个元素,所以,即.故答案为:.【点睛】本题主要考查集合的交集运算,集合交集的运算本质是存同去异,侧重考查数学运算的核心素养.16、【解析】

函数等价为,由二次函数的单调性可得在R上递增,即为,可得a的不等式,解不等式即可得到所求范围.【详解】,等价为,且时,递增,时,递增,且,在处函数连续,可得在R上递增,即为,可得,解得,即a的取值范围是.故答案为:.【点睛】本题考查分段函数的单调性的判断和运用:解不等式,考查转化思想和运算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(万)(2)(3)填表见解析;有的把握认为性别与“自然环境”或“人文环境”的选择有关【解析】

(1)在1000个样本中选择“创业氛围好”来A城市发展的有300个,根据频率公式即可求得结果.(2)由分层抽样的知识可得,抽取6人中,4人选择“森林城市,空气清新”,2人选择“降水充足,气候怡人”求出对应的基本事件数,即可求得结果.(3)计算的值,对照临界值表可得答案.【详解】(1)(万)(2)从所抽取选择“自然环境”作为来A城市发展理由的300人中,利用分层抽样的方法抽取6人,其中4人是选择“森林城市,空气清新”,2人是选择“降水充足,气候怡人”.记事件A为选出的3人中至少有2人选择“森林城市,空气清新”,则,.(3)列联表如下自然环境人文环境合计男100400500女200300500合计3007001000,所以有的把握认为性别与“自然环境”或“人文环境”的选择有关.【点睛】本题主要考查独立性检测的相关知识、分层抽样与古典概念计算概率、考查学生的综合分析与计算能力,难度较易.18、(1)见解析(2)【解析】

(1)连接交于点,连接,通过证明,证得平面.(2)建立空间直角坐标系,利用直线的方向向量和平面的法向量,计算出线面角的正弦值.【详解】(1)证明:连接交于点,连接,因为四边形为正方形,所以点为的中点,又因为为的中点,所以;平面平面,平面.(2)解:,设,则,在中,,由余弦定理得:,.又,平面..平面.如图建立的空间直角坐标系.在等腰梯形中,可得.则.那么设平面的法向量为,则有,即,取,得.设与平面所成的角为,则.所以与平面所成角的正弦值为.【点睛】本小题主要考查线面平行的证明,考查线面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.19、(1)(2)证明见解析【解析】

(1)由点可得,由,根据即可求解;(2)设直线的方程为,联立可得,设,由韦达定理可得,再根据直线的斜率公式求得;由点B与点Q关于原点对称,可设,可求得,则,即可求证.【详解】解:(1)由题意可知,,又,得,所以椭圆的方程为(2)证明:设直线的方程为,联立,可得,设,则有,因为,所以,又因为点B与点Q关于原点对称,所以,即,则有,由点在椭圆上,得,所以,所以,即,所以存在实数,使成立【点睛】本题考查椭圆的标准方程,考查直线的斜率公式的应用,考查运算能力.20、(1);(2)见解析.【解析】

(1)设切点坐标为,然后根据可解得实数的值;(2)令,,然后对实数进行分类讨论,结合和的符号来确定函数的零点个数.【详解】(1),,设曲线与轴相切于点,则,即,解得.所以,当时,轴为曲线的切线;(2)令,,则,,由,得.当时,,此时,函数为增函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论