版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届安徽省蒙城二中数学高二上期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,,是平面上两点,且,图中的一系列圆是圆心分别为,的两组同心圆,每组同心圆的半径分别是1,2,3,…,A,B,C,D,E是图中两组同心圆的部分公共点.若点A在以,为焦点的椭圆M上,则()A.点B和C都在椭圆M上 B.点C和D都在椭圆M上C.点D和E都在椭圆M上 D.点E和B都在椭圆M上2.意大利数学家斐波那契,以兔子繁殖为例,引入“兔子数列”,,,,,,,,…,在实际生活中很多花朵的瓣数恰是斐波那契数列中的数,斐波那契数列在物理化学等领域也有着广泛的应用.已知斐波那契数列满足:,,,若,则等于()A. B.C. D.3.不等式的一个必要不充分条件是()A. B.C. D.4.在平面上有一系列点,对每个正整数,点位于函数的图象上,以点为圆心的与轴都相切,且与彼此外切.若,且,,的前项之和为,则()A. B.C. D.5.命题:“,”的否定形式为()A., B.,C., D.,6.从装有2个红球和2个白球的袋内任取2个球,那么互斥而不对立的两个事件是()A.取出的球至少有1个红球;取出的球都是红球B.取出的球恰有1个红球;取出的球恰有1个白球C.取出的球至少有1个红球;取出的球都是白球D.取出的球恰有1个白球;取出的球恰有2个白球7.等差数列中,若,,则等于()A. B.C. D.8.《镜花缘》是清代文人李汝珍创作的长篇小说,书中有这样一个情节:一座楼阁到处挂满了五彩缤纷的大小灯球,灯球有两种,一种是大灯下缀2个小灯,另一种是大灯下缀4个小灯,大灯共360个,小灯共1200个.若在这座楼阁的灯球中,随机选取一个灯球,则这个灯球是大灯下缀4个小灯的概率为A. B.C. D.9.已知等比数列中,,,则公比()A. B.C. D.10.已知函数在上单调递减,则实数的取值范围是()A. B.C. D.11.已知点是椭圆的左右焦点,椭圆上存在不同两点使得,则椭圆的离心率的取值范围是()A. B.C. D.12.如图所示,已知三棱锥,点,分别为,的中点,且,,,用,,表示,则等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,,的前项和为,则______.14.经过两点的直线的倾斜角为,则___________.15.如图,在正方体中,、分别是、的中点,则异面直线与所成角的大小是____________.16.一个四面体有五条棱长均为2,则该四面体的体积最大值为_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥P-ABCD中,PD=2AD=4,PD⊥CD,PD⊥AD,底面ABCD为正方形,M、N、Q分别为AD、PD、BC的中点(1)证明:面PAQ//面MNC;(2)求二面角M-NC-D的余弦值18.(12分)椭圆的左右焦点分别为,,焦距为,为原点.椭圆上任意一点到,距离之和为.(1)求椭圆的标准方程;(2)过点的斜率为2的直线交椭圆于、两点,求的面积.19.(12分)已知椭圆的中心在原点,焦点在轴上,长轴长为4,离心率等于(1)求椭圆的方程(2)设,若椭圆E上存在两个不同点P、Q满足,证明:直线PQ过定点,并求该定点的坐标.20.(12分)在中,角、、所对的边分别为、、,且(1)求证;、、成等差数列;(2)若,的面积为,求的周长21.(12分)已知点为椭圆C的右焦点,P为椭圆上一点,且(O为坐标原点),.(1)求椭圆C的标准方程;(2)经过点的直线l与椭圆C交于A,B两点,求弦的取值范围.22.(10分)已知数列的前n项和为,且满足(1)证明数列是等比数列;(2)若数列满足,证明数列的前n项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据椭圆的定义判断即可求解.【详解】因为,所以椭圆M中,因为,,,,所以D,E在椭圆M上.故选:C2、A【解析】利用可化简得,由此可得.【详解】由得:,,即.故选:A.3、B【解析】解不等式,由此判断必要不充分条件.【详解】,解得,所以不等式的一个必要不充分条件是.故选:B4、C【解析】根据两圆的几何关系及其圆心在函数的图象上,即可得到递推关系式,通过构造等差数列求得的通项公式,得出,最后利用裂项相消,求出数列前项和,即可求出.详解】由与彼此外切,则,,,又∵,∴,故为等差数列且,,则,,则,即,故答案选:.5、D【解析】根据含一个量词的命题的否定方法直接得到结果.【详解】因为全称命题的否定是特称命题,所以命题:“,”的否定形式为:,,故选:D.【点睛】本题考查全称命题的否定,难度容易.含一个量词的命题的否定方法:修改量词,否定结论.6、D【解析】利用互斥事件、对立事件的定义逐一判断即可.【详解】A答案中的两个事件可以同时发生,不是互斥事件B答案中的两个事件可以同时发生,不是互斥事件C答案中的两个事件不能同时发生,但必有一个发生,既是互斥事件又是对立事件D答案中的两个事件不能同时发生,也可以都不发生,故是互斥而不对立事件故选:D【点睛】本题考查的是互斥事件和对立事件的概念,较简单.7、C【解析】由等差数列下标和性质可得.【详解】因为,,所以.故选:C8、B【解析】设大灯下缀2个小灯为个,大灯下缀4个小灯有个,根据题意求得,再由古典概型及其概率的公式,即可求解【详解】设大灯下缀2个小灯为个,大灯下缀4个小灯有个,根据题意可得,解得,则灯球的总数为个,故这个灯球是大灯下缀4个小灯的概率为,故选B【点睛】本题主要考查了古典概型及其概率的计算,其中解答中根据题意列出方程组,求得两种灯球的数量是解答的关键,着重考查了运算与求解能力,属于基础题9、C【解析】利用等比中项的性质可求得的值,再由可求得结果.【详解】由等比中项的性质可得,解得,又,,故选:C.10、A【解析】由题意,在上恒成立,只需满足即可求解.【详解】解:因为,所以,因为函数在上单调递减,所以在上恒成立,只需满足,即,解得故选:A.11、C【解析】先设点,利用向量关系得到两点坐标之间的关系,再结合点在椭圆上,代入方程,消去即得,根据题意,构建的齐次式,解不等式即得结果.【详解】设,由得,,,即,由在椭圆上,故,即,消去得,,根据椭圆上点满足,又两点不同,可知,整理得,故,故.故选:C.【点睛】关键点点睛:圆锥曲线中离心率的计算,关键是根据题中条件,结合曲线性质,找到一组等量关系(齐次式),进而求解离心率或范围.12、A【解析】连接,先根据已知条件表示出,再根据求得结果.【详解】连接,如下图所示:因为为的中点,所以,又因为为的中点,所以,所以,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析出当为正奇数时,,可求得的值,再分析出当为正偶数时,,可求得的值,进而可求得的值.【详解】由题知,当为正奇数时,,于是,,,,,所以.又因为当为正偶数时,,且,所以两式相加可得,于是,两式相减得.所以,故.故答案为:.【点睛】关键点点睛:本题的解题关键在于分析出当为正奇数时,,以及当为正偶数时,,找出规律,结合并项求和法求出以及的值.14、2【解析】由两点间的斜率公式及直线斜率的定义即可求解.【详解】解:因为过两点的直线的倾斜角为,所以,解得,故答案为:2.15、【解析】分别以所在直线为轴,建立空间直角坐标系,设,则,,即异面直线A1M与DN所成角的大小是考点:异面直线所成的角16、1【解析】由已知中一个四面体有五条棱长都等于2,易得该四面体必然有两个面为等边三角形,根据棱锥的几何特征,分析出当这两个平面垂直时,该四面体的体积最大,将相关几何量代入棱锥体积公式,即可得到答案【详解】一个四面体有五条棱长都等于2,如下图:设除PC外的棱均为2,设P到平面ABC距离为h,则三棱锥的体积V=,∵是定值,∴当P到平面ABC距离h最大时,三棱锥体积最大,故当平面PAB⊥平面ABC时,三棱锥体积最大,此时h为等边三角形PAB的AB边上的高,则h,故三棱锥体积的最大值为:故答案为:1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明过程见解析(2)【解析】(1)由线线平行证明线面平行;(2)建立空间直角坐标系,利用空间向量进行求解二面角的余弦值.【小问1详解】因为M,N是DA,PD的中点,所以MN//AP,因为平面PAQ,平面PAQ,所以MN//平面PAQ因为四边形ABCD为正方形,且Q为BC中点,所以MA//CQ,且MA=CQ,所以四边形MAQC为平行四边形,所以CM//AQ,因为平面PAQ,平面PAQ,所以MC//平面PAQ,因为,所以面PAQ//面MNC【小问2详解】因为PD⊥CD,PD⊥AD,AD⊥CD故以D为坐标原点,DA所在直线为x轴,DC所在直线为y轴,DP所在直线为z轴建立空间直角坐标系,则,,,设平面NMC的法向量为,则,令得:,所以,平面NDC的法向量为,则,设二面角M-NC-D的大小为,显然为锐角,则18、(1)(2)【解析】(1)根据题意和椭圆的定义可知a,c,再根据,即可求出b,由此即可求出椭圆的方程;(2)求出直线方程,将其与椭圆方程联立,根据弦长公式求出的长度,再根据点到直线的距离公式求出点O到直线AB的距离,再根据面积公式即可求出结果.【小问1详解】由题意可得,,∴,,,所以椭圆的标准方程为.【小问2详解】直线l的方程为,代入椭圆方程得,设,,则,,,∴,又∵点O到直线AB的距离,∴,即△OAB的面积为.19、(1);(2)证明见解析,.【解析】(1)由题可得,即求;(2)设直线PQ的方程为,联立椭圆方程,利用韦达定理法可得,即得.【小问1详解】由题可设椭圆的方程为,则,∴,∴椭圆的方程为;【小问2详解】当直线PQ的斜率存在时,可设直线PQ的方程为,设,由,得,∴,∵,,∴,∴,∴,∴,又∴,∴直线PQ的方程为过定点;当直线PQ的斜率不存在时,不合题意.故直线PQ过定点,该定点的坐标为.20、(1)证明见解析(2)【解析】(1)利用正弦定理结合两角和的正弦公式求出的值,结合角的取值范围可求得角的值,可求得的值,即可证得结论成立;(2)利用三角形的面积公式可求得的值,结合余弦定理可求得的值,进而可求得的周长.【小问1详解】证明:由正弦定理及,得,所以,,所以,,,则,所以,,又,,,因此,、、成等差数列.【小问2详解】解:,,又,,故的周长为.21、(1)(2)【解析】(1)利用椭圆定义求得椭圆的即可解决;(2)经过点的直线l分为斜率不存在和存在两种情况,分别去求弦,再去求其取值范围即可.【小问1详解】由题意得.记左焦点为,,则,,解得.由椭圆定义得:,则,所以椭圆C的方程为:.【小问2详解】①当直线l的斜率不存在时,.②当直线l的斜率存在时,设斜率为k,则l的方程为.联立椭圆与直线的方程(由于点在椭圆内,∴成立),且,,令,则,,,由得,综上所述,弦的取值范围为.【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系(2)涉及到直线方程的设法时,务必考虑
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全国青少年禁毒知识竞赛题库与答案(中学组)
- 公共安全监管人员安全知识测试题库及答案
- 营销调研考试题及答案
- LG(中国)招聘面试题及答案
- 大学语文考研试题及答案
- 中建东孚2026届校园招聘考试备考题库附答案
- 关于南昌市湾里管理局2025年度公开选调事业单位工作人员的【24人】考试备考题库附答案
- 四川文理学院2025年下半年公开选调工作人员(2人)考试备考题库附答案
- 广发证券分支机构“星·起点”培训生2026届校招参考题库附答案
- 昆仑集团2026届大学毕业生招聘参考题库必考题
- 传染病学-病毒性肝炎
- 电气试验报告模板
- 重庆市沙坪坝小学小学语文五年级上册期末试卷
- 陶瓷岩板应用技术规程
- 中药制剂技术中职PPT完整全套教学课件
- 龙虎山正一日诵早晚课
- WORD版A4横版密封条打印模板(可编辑)
- 1比较思想政治教育
- 艺术课程标准(2022年版)
- JJF 1654-2017平板电泳仪校准规范
- 上海市工业用水技术中心-工业用水及废水处理课件
评论
0/150
提交评论