江西省赣州寻乌县第二中学2026届数学高二上期末质量跟踪监视试题含解析_第1页
江西省赣州寻乌县第二中学2026届数学高二上期末质量跟踪监视试题含解析_第2页
江西省赣州寻乌县第二中学2026届数学高二上期末质量跟踪监视试题含解析_第3页
江西省赣州寻乌县第二中学2026届数学高二上期末质量跟踪监视试题含解析_第4页
江西省赣州寻乌县第二中学2026届数学高二上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省赣州寻乌县第二中学2026届数学高二上期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若数列1,a,b,c,9是等比数列,则实数b的值为()A.5 B.C.3 D.3或2.在等差数列中,已知,,则使数列的前n项和成立时n的最小值为()A.6 B.7C.9 D.103.设实系数一元二次方程在复数集C内的根为、,则由,可得.类比上述方法:设实系数一元三次方程在复数集C内的根为,则的值为A.﹣2 B.0C.2 D.44.下列关于命题的说法错误的是A.命题“若,则”的逆否命题为“若,则”B.“”是“函数在区间上为增函数”的充分不必要条件C.命题“,使得”的否定是“,均有”D.“若为的极值点,则”的逆命题为真命题5.抛掷两枚硬币,若记出现“两个正面”“两个反面”“一正一反”的概率分别为,,,则下列判断中错误的是().A. B.C. D.6.已知实数、满足,则的最大值为()A. B.C. D.7.古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的中心为原点,焦点,均在y轴上,椭圆C的面积为,且短轴长为,则椭圆C的标准方程为()A. B.C. D.8.已知椭圆的左,右两个焦点分别为,若椭圆C上存在一点A,满足,则椭圆C的离心率的取值范围是()A. B.C. D.9.已知直线过点,且与直线垂直,则直线的方程为()A. B.C. D.10.若数列是等差数列,其前n项和为,若,且,则等于()A. B.C. D.11.根据如下样本数据,得到回归直线方程,则x345678y4.02.5-0.50.5-2.0-3.0A. B.C. D.12.已知,记M到x轴的距离为a,到y轴的距离为b,到z轴的距离为c,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,已知正方形边长为,长方形中,,平面与平面互相垂直,是线段的中点,则异面直线与所成角的余弦值为______14.已知球的表面积为,则该球的体积为______.15.2021年7月24日,在东京奥运会女子10米气步枪决赛中,中国选手杨倩以251.8环的总成绩夺得金牌,为中国代表团摘得本届奥运会首金.已知杨倩其中5次射击命中的环数如下:10.8,10.6,10.6,10.7,9.8,则这组数据的方差为______16.已知茎叶图记录了甲、乙两组各名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为,乙组数据的平均数为,则的值为__________.甲组乙组三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知为数列的前项和,且(1)求数列的通项公式;(2)若,求数列的前项和(3)设,若不等式对一切恒成立,求实数取值范围18.(12分)如图所示,在直四棱柱中,底面ABCD是菱形,点E,F分别在棱,上,且,(1)证明:点在平面BEF内;(2)若,,,求直线与平面BEF所成角的正弦值19.(12分)已知等差数列中,(1)分别求数列的通项公式和前项和;(2)设,求20.(12分)已知椭圆的左、右焦点分别是,,离心率为,过且垂直于x轴的直线被椭圆C截得的线段长为1(1)求椭圆C方程;(2)设点P在直线上,过点P的两条直线分别交曲线C于A,B两点和M,N两点,且,求直线AB的斜率与直线MN的斜率之和21.(12分)【2018年新课标I卷文】已知函数(1)设是的极值点.求,并求的单调区间;(2)证明:当时,22.(10分)写出下列命题的否定,并判断它们的真假:(1):任意两个等边三角形都是相似的;(2):,.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据等比数列的定义,利用等比数列的通项公式求解【详解】解:设该等比数列公比为q,∵数列1,a,b,c,9是等比数列,∴,,∴,故,解得,∴故选:C2、D【解析】根据等差数列的性质及等差中项结合前项和公式求得,,从而得出结论.【详解】,,,,,,,使数列的前n项和成立时n的最小值为10,故选:D.3、A【解析】用类比推理得到,再用待定系数法得到,,再根据求解.【详解】,由对应系数相等得:,.故选:A.【点睛】本题主要考查合情推理以及待定系数法,还考查了转化化归的思想和逻辑推理的能力,属于中档题.4、D【解析】根据命题及其关系、充分条件与必要条件、导数在函数中应用、全称量词与存在量词等相关知识一一判断可得答案.【详解】解:A,由原命题与逆否命题的构成关系,可知A正确;B,当a=2>1时,函数在定义域内是单调递增函数,当函数定义域内是单调递增函数时,a>1.所以B正确;C,由于存在性命题的否定是全称命题,所以",使得"的否定是",均有,所以C正确;D,的根不一定是极值点,例如:函数,则=0,即x=0就不是极值点,所以“若为的极值点,则”的逆命题为假命题,故选D.【点睛】本题主要考查命题及其关系、充分条件与必要条件、导数在函数中应用、全称量词与存在量词等相关知识,需牢记并灵活运用相关知识.5、A【解析】把抛掷两枚硬币的情况均列举出来,利用古典概型的计算公式,把,,算出来,判断四个选项的正误.【详解】两枚硬币,记为与,则抛掷两枚硬币,一共会出现的情况有四种,A正B正,A正B反,A反B正,A反B反,则,,,所以A错误,BCD正确故选:A6、A【解析】作出可行域,利用代数式的几何意义,利用数形结合可求得的最大值.【详解】作出不等式组所表示的可行域如下图所示:联立可得,即点,代数式的几何意义是连接可行域内一点与定点连线的斜率,由图可知,当点在可行域内运动时,直线的倾斜角为锐角,当点与点重合时,直线的倾斜角最大,此时取最大值,即.故选:A.7、C【解析】设出椭圆的标准方程,根据已知条件,求得,即可求得结果.【详解】因为椭圆的焦点在轴上,故可设其方程为,根据题意可得,,故可得,故所求椭圆方程为:.故选:C.8、C【解析】根据题意可知当A为椭圆的上下顶点时,即可满足椭圆C上存在一点A,使得,由此可得,解此不等式可得答案.【详解】由椭圆的对称性可知,当A为椭圆的上下顶点时,最大,故只需即可满足题意,设O为坐标原点,则只需,即有,所以,解得,故选:C9、A【解析】求出直线斜率,利用点斜式可得出直线的方程.【详解】直线的斜率为,则直线的斜率为,故直线的方程为,即.故选:A.10、B【解析】由等差数列的通项公式和前项和公式求出的首项和公差,即可求出.【详解】设等差数列的公差为,则解得:,所以.故选:B.11、B【解析】作出散点图,由散点图得出回归直线中的的符号【详解】作出散点图如图所示.由图可知,回归直线=x+的斜率<0,当x=0时,=>0.故选B【点睛】本题考查了散点图的概念,拟合线性回归直线第一步画散点图,再由数据计算的值12、C【解析】分别求出点M在x轴,y轴,z轴上的投影点的坐标,再借助空间两点间距离公式计算作答.【详解】设点M在x轴上的投影点,则,而x轴的方向向量,由得:,解得,则,设点M在y轴上的投影点,则,而y轴的方向向量,由得:,解得,则,设点M在z轴上的投影点,则,而z轴的方向向量,由得:,解得,则,所以.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立如图所示的空间直角坐标系,求出,后可求异面直线所成角的余弦值.【详解】长方形可得,因为平面与平面互相垂直,平面平面,平面,故平面,故可建立如图所示的空间直角坐标系,则,故,,故.故答案为:14、【解析】设球半径为,由球表面积求出,然后可得球的体积【详解】设球半径为,∵球的表面积为,∴,∴,∴该球的体积为故答案为【点睛】解答本题的关键是熟记球的表面积和体积公式,解题时由条件求得球的半径后可得所求结果15、128【解析】先求均值,再由方差公式计算【详解】由已知,所以,故答案为:16、【解析】根据中位数、平均数的定义,结合茎叶图进行计算求解即可.【详解】根据茎叶图可知:甲组名学生在一次英语听力测试中的成绩分别;乙组名学生在一次英语听力测试中的成绩分别,因为甲组数据的中位数为,所以有,又因为乙组数据的平均数为,所以有,所以,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】(1)利用的关系,根据等比数列的定义求通项公式.(2)由(1)可得,应用裂项相消法求.(3)应用错位相减法求得,由题设有,讨论为奇数、偶数求的取值范围【小问1详解】当时,,可得,当时,,可得,∴是首项、公比都为的等比数列,故.【小问2详解】由(1),,∴.【小问3详解】由题设,,∴,则,∴,由对一切恒成立,令,则,∴数列单调递减,∴当为奇数,恒成立且在上递减,则,当为偶数,恒成立且在上递增,则,综上,.18、(1)证明见解析;(2).【解析】(1)设、、、AC与BD的交点为O,由直四棱柱的性质构建空间直角坐标系,确定、的坐标可得,即可证结论.(2)由题设,求出、、的坐标,进而求得面BEF的法向量,利用空间向量夹角的坐标表示求直线与平面BEF所成角的正弦值【小问1详解】由题意,,设,,,设AC与BD的交点为O,以O为坐标原点,分别以BD,AC所在直线为x,y轴建立如下空间直角坐标系,则,,,,所以,,得,即,因此点在平面BEF内【小问2详解】由(1)及题设,,,,,所以,,设为平面BEF的法向量,则,令,即设直线与平面BEF所成角为,则19、(1),(2)【解析】(1)利用可以求出公差,即可求出数列的通项公式;(2)通过(1)判断符号,进而分和两种情况讨论求解即可.【小问1详解】解:设数列的公差为,,,,【小问2详解】解:由(1)可知,,当时,,当时,,所以当时,,当时,所以.20、(1)(2)0【解析】(1)由条件得和,再结合可求解;(2)设直线AB的方程为:,与椭圆联立,得到,同理得,再根据题中的条件化简整理可求解.【小问1详解】因为椭圆的离心率为,所以,所以①又因为过且垂直于x轴的直线被椭圆C截得的线段长为1,所以②,由①②可知,所以,,所以椭圆C的方程为【小问2详解】因为点P在直线上,所以设点,由题可知,直线AB的斜率与直线MN的斜率都存在所以直线AB的方程为:,即,直线MN的方程为:,即,设,,,,所以,消去y可得,,整理可得,且所以,,又因为,,所以,同理可得,又因为,所以,又因为,,,都是长度,所以,所以,整理可得,又因为,所以,所以直线AB的斜率与直线MN的斜率之和为021、(1)a=;f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)证明见解析.【解析】分析:(1)先确定函数的定义域,对函数求导,利用f′(2)=0,求得a=,从而确定出函数的解析式,之后观察导函数的解析式,结合极值点的位置,从而得到函数的增区间和减区间;(2)结合指数函数的值域,可以确定当a≥时,f(x)≥,之后构造新函数g(x)=,利用导数研究函数的单调性,从而求得g(x)≥g(1)=0,利用不等式的传递性,证得结果.详解:(1)f(x)的定义域为,f′(x)=aex–由题设知,f′(2)=0,所以a=从而f(x)=,f′(x)=当0<x<2时,f′(x)<0;当x>2时,f′(x)>0所以f(x)在(0,2)单调递减,在(2,+∞)单调递增(2)当a≥时,f(x)≥设g(x)=,则当0<x<1时,g′(x)<0;当x>1时,g′(x)>0.所以x=1是g(x)的最小值点故当x>0时,g(x)≥g(1)=0因此,当时,点睛:该题考查的是有关导数的应用问题,涉及到的知识点有导数与极值、导数与最值、导数与函数的单调性的关系以及证明不等式问题,在解题的过程中,首先

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论