版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省永春县第一中学2026届数学高二上期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.袋子中有四个小球,分别写有“文、明、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“文、明、中、国”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:由此可以估计,恰好第三次就停止的概率为()A. B.C. D.2.某机构通过抽样调查,利用列联表和统计量研究患肺病是否与吸烟有关,计算得,经查对临界值表知,,现给出四个结论,其中正确的是()A.因为,故有90%的把握认为“患肺病与吸烟有关"B.因为,故有95%把握认为“患肺病与吸烟有关”C.因为,故有90%的把握认为“患肺病与吸烟无关”D.因为,故有95%的把握认为“患肺病与吸烟无关”3.如图,已知二面角平面角的大小为,其棱上有、两点,、分别在这个二面角的两个半平面内,且都与垂直.已知,,则()A. B.C. D.4.如图,在长方体中,,,则直线和夹角余弦值为()A. B.C. D.5.已知等比数列中,,,则首项()A. B.C. D.06.已知向量,,则()A. B.C. D.7.双曲线与椭圆的焦点相同,则等于()A.1 B.C.1或 D.28.设是空间一定点,为空间内任一非零向量,满足条件的点构成的图形是()A.圆 B.直线C.平面 D.线段9.若直线与直线垂直,则()A.6 B.4C. D.10.有甲、乙两个抽奖箱,甲箱中有3张无奖票3张有奖票,乙箱中有4张无奖票2张有奖票,某人先从甲箱中抽出一张放进乙箱,再从乙箱中任意抽出一张,则最后抽到有奖票的概率是()A. B.C. D.11.【2018江西抚州市高三八校联考】已知双曲线(,)与抛物线有相同的焦点,且双曲线的一条渐近线与抛物线的准线交于点,则双曲线的离心率为()A. B.C. D.12.“”是“”的()A.充分不必要条件 B.必要不充分条件C充分必要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.直线被圆截得的弦长为_______14.若把英语单词“”的字母顺序写错了,则可能出现的错误有______种15.设函数,则___________.16.在中,,是线段上的点,,若的面积为,当取到最大值时,___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知:对任意,都有;:存在,使得(1)若“且”为真,求实数的取值范围;(2)若“或”为真,“且”为假,求实数的取值范围18.(12分)在等比数列{}中,(1),,求;(2),,求的值.19.(12分)已知各项均为正数的等比数列前项和为,且,.(1)求数列的通项公式;(2)若,求20.(12分)在等差数列中,(1)求数列的通项公式;(2)设,求21.(12分)在数列中,,点在直线上.(1)求的通项公式;(2)记的前项和为,且,求数列的前项和.22.(10分)已知椭圆C:的离心率为,,是椭圆的左、右焦点,过且垂直于x轴的直线被椭圆C截得的线段长为1(1)求椭圆C的方程;(2)过点的直线l与椭圆C交于A,B两点,求(O为坐标原点)的面积的最大值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用古典概型的概率公式求解.【详解】因为随机模拟产生了以下18组随机数:,其中恰好第三次就停止包含的基本事件有:023,123,132共3个,所以由此可以估计,恰好第三次就停止的概率为,故选:A2、A【解析】根据给定条件利用独立性检验的知识直接判断作答.【详解】因,且,由临界值表知,,,所以有90%的把握认为“患肺病与吸烟有关”,则A正确,C不正确;.因临界值3.841>3.305,则不能确定有95%的把握认为“患肺病与吸烟有关”,也不能确定有95%的把握认为“患肺病与吸烟无关”,即B,D都不正确.故选:A3、C【解析】以、为邻边作平行四边形,连接,计算出、的长,证明出,利用勾股定理可求得的长.【详解】如下图所示,以、为邻边作平行四边形,连接,因为,,则,又因为,,,故二面角的平面角为,因为四边形为平行四边形,则,,因为,故为等边三角形,则,,则,,,故平面,因为平面,则,故.故选:C.4、D【解析】如图建立空间直角坐标系,分别求出的坐标,由空间向量夹角公式即可求解.【详解】如图:以为原点,分别以,,所在的直线为,,轴建立空间直角坐标系,则,,,,所以,,所以,所以直线和夹角的余弦值为,故选:D.5、B【解析】设等比数列的公比为q,根据等比数列的通项公式,列出方程组,即可求得,进而可求得答案.【详解】设等比数列公比为q,则,解得,所以.故选:B6、D【解析】按空间向量的坐标运算法则运算即可.【详解】.故选:D.7、A【解析】根据双曲线方程形式确定焦点位置,再根据半焦距关系列式求参数.【详解】因为双曲线的焦点在轴上,所以椭圆焦点在轴上,依题意得解得.故选:A8、C【解析】根据法向量的定义可判断出点所构成的图形.【详解】是空间一定点,为空间内任一非零向量,满足条件,所以,构成的图形是经过点,且以为法向量的平面.故选:C.【点睛】本题考查空间中动点的轨迹,考查了法向量定义的理解,属于基础题.9、A【解析】由两条直线垂直的条件可得答案.【详解】由题意可知,即故选:A.10、B【解析】先分为在甲箱中抽出一张有奖票放入乙箱和在甲箱中抽出一张无奖票放入乙箱,进而结合条件概率求概率的方法求得答案.【详解】记表示在甲箱中抽出一张有奖票放进乙箱,表示在甲箱中抽出一张无奖票放进乙箱,A表示最后抽到有奖票.所以,,于是.故选:B.11、C【解析】由题意可知,抛物线的焦点坐标为,准线方程为,由在抛物线的准线上,则,则,则焦点坐标为,所以,则,解得,双曲线的渐近线方程是,将代入渐近线的方程,即,则双曲线的离心率为,故选C.12、A【解析】根据充分条件和必要条件的定义直接判断即可.【详解】若,则,即或,推不出;反过来,若,可推出.故“”是“”的充分不必要条件故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出圆心到直线的距离,结合半径,利用勾股定理可得答案.【详解】的圆心坐标为,,圆心到直线的距离,则直线被圆截得的弦长为:故答案为:14、23【解析】先计算该单词所有字母能够组成的所有排列情况,然后减去正确的,即是可能出现错误的情况.【详解】因为“”四个字母组成的全排列共有(种)结果,其中只有排列“”是正确的,其余全是错误的,故可能出现错误的共有(种).故答案为:23.15、【解析】由的导数为,将代入,即可求出结果.【详解】因为,所以,所以.故答案为:.16、【解析】由三角形面积公式得出,设,由可得出,利用基本不等式可求出的值,利用等号成立可得出、的值,再利用余弦利用可得出的值.【详解】由题意可得,解得,设,则,可得,由基本不等式可得,当且仅当时,取得最大值,,,由余弦定理得,解得.故答案为【点睛】本题考查余弦定理解三角形,同时也考查了三角形的面积公式以及利用基本不等式求最值,在利用基本不等式求最值时,需要结合已知条件得出定值条件,同时要注意等号成立的条件,考查分析问题和解决问题的能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2).【解析】(1)由已知得,均为真命题,分别求得为真命题,为真命题时,实数的取值范围,再由集合的交集运算求得答案;(2)由已知得,一真一假,建立不等式组,求解即可.【小问1详解】解:因为“且”为真命题,所以,均为真命题若为真命题,则,解得;若为真命题,则,当且仅当,即时,等号成立,此时故实数的取值范围是;【小问2详解】解:若“或”为真,“且”为假,则,一真一假当真,假时,则得;当假,真时,则得故实数的取值范围为18、(1)(2)【解析】(1)直接利用等比数列的求和公式求解即可,(2)由已知条件结合等比数的性质可得,从而可求得答案,或直接利用等比数列的求和公式化简求解【小问1详解】.【小问2详解】方法1:.∴.方法2:,整理得:又19、(1)(2)9【解析】(1)根据题意列出关于等比数列首项、公比的方程组即可解决;(2)利用等比数列的前项和的公式,解方程即可解决.【小问1详解】设各项均为正数的等比数列首项为,公比为则有,解之得则等比数列的通项公式.【小问2详解】由,可得20、(1)(2)【解析】(1)直接利用等差数列的通项公式即可求解;(2)先判断出数列单调性,由时,,时,;然后去掉绝对值,利用等差数列的前项和公式求解即可.【小问1详解】是等差数列,公差;即;【小问2详解】,则由(1)可知前五项为正,第六项开始为负.21、(1)(2)【解析】(1)由定义证明数列是等差数列,再由得出通项公式;(2)先由求和公式得出,再由裂项相消求和法求和即可.【小问1详解】由题意可知,,所以数列是公差的等差数列又,所以,故小问2详解】,则故22、(1);(2)1.【解析】(1)根据给定条件结合列式计算得解.(2)设出直线l的方程,与椭圆C的方程联立,借助韦达定理结合均值不等式计算作答.【小问1详解】椭圆C的半焦距为c,离心率,因过且垂直于x轴的直线被椭圆C截得的弦长为1,将代入椭圆C方程得:,即,则有,解得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026河北廊坊师范学院选聘26人备考题库带答案详解
- 2026年云南省人力资源和社会保障厅所属事业单位招聘人员备考题库(12人)及完整答案详解1套
- 高校在线英语听说能力测试题库
- 文艺复兴时期教育体系发展
- 高校教师教学能力提升案例汇编
- 2026四川大学华西医院细胞工程与免疫治疗研究室博士后招聘备考题库及1套完整答案详解
- 拼音三拼音节专项训练题库
- xx学校对供应商考核评价制度
- 部门员工安全责任书范本下载
- 七年级英语Unit7教学方案与课堂活动
- 苏教版六年级数学上册全册知识点归纳(全梳理)
- 2025年版个人与公司居间合同范例
- 中铁物资采购投标
- 泄漏管理培训课件
- 电子商务平台项目运营合作协议书范本
- 动设备监测课件 振动状态监测技术基础知识
- 服装厂员工绩效考核与奖惩制度
- 专题15平面解析几何(选择填空题)(第一部分)(解析版) - 大数据之十年高考真题(2014-2025)与优 质模拟题(新高考卷与全国理科卷)
- 部门考核方案
- 茜草素的药代动力学和药效学研究
- T-CPQS C010-2024 鉴赏收藏用潮流玩偶及类似用途产品
评论
0/150
提交评论