江苏省常州市常州中学2026届数学高一上期末统考模拟试题含解析_第1页
江苏省常州市常州中学2026届数学高一上期末统考模拟试题含解析_第2页
江苏省常州市常州中学2026届数学高一上期末统考模拟试题含解析_第3页
江苏省常州市常州中学2026届数学高一上期末统考模拟试题含解析_第4页
江苏省常州市常州中学2026届数学高一上期末统考模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省常州市常州中学2026届数学高一上期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的部分图像如图所示,则该函数的解析式为()A. B.C. D.2.函数的单调减区间为()A. B.C. D.3.如图,在矩形中,是两条对角线的交点,则A. B.C. D.4.已知函数f(x)=a+log2(x2+a)(a>0)的最小值为8,则实数a的取值属于以下哪个范围()A.(5,6) B.(7,8)C.(8,9) D.(9,10)5.若幂函数的图像经过点,则A.1 B.2C.3 D.46.如果,,那么()A. B.C. D.7.函数在区间上的最大值是A.1 B.C. D.1+8.函数的最大值为()A. B.C.2 D.39.在平面直角坐标系中,角以为始边,终边与单位圆交于点,则()A. B.C. D.10.若不等式对一切恒成立,那么实数的取值范围是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知点在直线上,则的最小值为______12.如图,若集合,,则图中阴影部分表示的集合为___13.设函数是定义在上的奇函数,且,则___________14.已知函数f(x)=lg(x2+2ax-5a)在[2,+∞)上是增函数,则a的取值范围为______15.已知角的终边经过点,则的值是______.16.已知函数f(x)=,设a∈R,若关于x的不等式f(x)在R上恒成立,则a的取值范围是__三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数=(1)判断的奇偶性;(2)求在的值域18.已知,函数.(1)若有两个零点,且的最小值为,当时,判断函数在上的单调性,并说明理由;(2)设,记为集合中元素的最大者与最小者之差.若对,恒成立,求实数a的取值范围.19.已知M(1,﹣1),N(2,2),P(3,0).(1)求点Q的坐标,满足PQ⊥MN,PN∥MQ.(2)若点Q在x轴上,且∠NQP=∠NPQ,求直线MQ的倾斜角.20.已知函数(为常数且)的图象经过点,(1)试求的值;(2)若不等式在时恒成立,求实数的取值范围.21.已知函数(1)求函数的单调递减区间;(2)若关于的方程有解,求的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由图象确定以及周期,进而得出,再由得出的值.【详解】显然因为,所以,所以由得所以,即,因为,所以所以.故选:A【点睛】本题主要考查了由函数图象确定正弦型函数的解析式,属于中档题.2、A【解析】先求得函数的定义域,利用二次函数的性质求得函数的单调区间,结合复合函数单调性的判定方法,即可求解.【详解】由不等式,即,解得,即函数的定义域为,令,可得其图象开口向下,对称轴的方程为,当时,函数单调递增,又由函数在定义域上为单调递减函数,结合复合函数的单调性的判定方法,可得函数的单调减区间为.故选:A.3、B【解析】利用向量加减法的三角形法则即可求解.【详解】原式=,答案为B.【点睛】主要考查向量的加减法运算,属于基础题.4、A【解析】根复合函数的单调性,得到函数f(x)的单调性,求解函数的最小值f(x)min=8,构造新函数g(a)=a+log2a-8,利用零点的存在定理,即可求解.【详解】由题意,根复合函数的单调性,可得函数f(x)在[0,+∞)上是增函数,在(-∞,0)上递减,所以函数f(x)的最小值f(x)min=f(0)=a+log2a=8,令g(a)=a+log2a-8,a>0,则g(5)=log25-3<0,g(6)=log26-2>0,又g(a)在(0,+∞)上是增函数,所以实数a所在的区间为(5,6)【点睛】本题主要考查了函数的单调性的应用,以及零点的存在定理的应用,其中解答中根据复合函数的单调性,求得函数的最小值,构造新函数,利用零点的存在定理求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.5、B【解析】由题意可设,将点代入可得,则,故选B.6、D【解析】根据不等式的性质,对四个选项进行判断,从而得到答案.【详解】因为,所以,故A错误;因为,当时,得,故B错误;因为,所以,故C错误;因为,所以,故D正确.故选:D.【点睛】本题考查不等式的性质,属于简单题.7、C【解析】由,故选C.8、B【解析】先利用,得;再用换元法结合二次函数求函数最值.【详解】,,当时取最大值,.故选:B【点睛】易错点点睛:注意的限制条件.9、A【解析】根据任意角三角函数的概念可得出,然后利用诱导公式求解.【详解】因为角以为始边,且终边与单位圆交于点,所以,则.故选:A.【点睛】当以为始边,已知角终边上一点的坐标为时,则,.10、D【解析】由绝对值不等式解法,分类讨论去绝对值,再根据恒成立问题的解法即可求得a的取值范围【详解】根据绝对不等式,分类讨论去绝对值,得所以所以所以选D【点睛】本题考查了绝对值不等式化简方法,恒成立问题的基本应用,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】由点在直线上得上,且表示点与原点的距离∴的最小值为原点到直线的距离,即∴的最小值为2故答案为2点睛:本题考查了数学的化归与转换能力,首先要知道一些式子的几何意义,比如本题表示点和原点的两点间距离,所以本题转化为已知直线上的点到定点的距离的最小值,即定点到直线的距离最小.12、【解析】图像阴影部分对应的集合为,,故,故填.13、【解析】先由已知条件求出的函数关系式,也就是当时的函数关系式,再求得,然后求的值即可【详解】解:当时,,∴,∵函数是定义在上的奇函数,∴,∴,即由题意得,∴故答案为:【点睛】此题考查了分段函数求值,考查了奇函数的性质,属于基础题.14、【解析】利用对数函数的定义域以及二次函数的单调性,转化求解即可【详解】解:函数f(x)=lg(x2+2ax﹣5a)在[2,+∞)上是增函数,可得:,解得a∈[﹣2,4)故答案为[﹣2,4)【点睛】本题考查复合函数的单调性的应用,考查转化思想以及计算能力15、##【解析】根据三角函数定义得到,,进而得到答案.【详解】角的终边经过点,,,.故答案为:.16、﹣≤a≤2【解析】先求画出函数的图像,然后对的图像进行分类讨论,使得的图像在函数的图像下方,由此求得的取值范围.【详解】画出函数的图像如下图所示,而,是两条射线组成,且零点为.将向左平移,直到和函数图像相切的位置,联立方程消去并化简得,令判别式,解得.将向右平移,直到和函数图像相切的位置,联立方程消去并化简得,令判别式,解得.根据图像可知【点睛】本小题主要考查分段函数的图像与性质,其中包括二次函数的图像、对勾函数的图像,以及含有绝对值函数的图像,考查恒成立问题的求解方法,考查数形结合的数学思想方法以及分类讨论的数学思想方法,属于中档题.形如函数的图像,是引出的两条射线.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)奇函数(2)【解析】(1)由奇偶性的定义判断(2)由对数函数性质求解【小问1详解】,则,的定义域为,,故是奇函数【小问2详解】,当时,,故,即在的值域为18、(1)函数在区间上是单调递减,理由见解析(2)【解析】(1)运用单调性的定义去判断或者根据函数本身的性质去判断即可;(2)区间与二次函数的对称轴比较,从而的情况中分类讨论,而后得到的解析式,通过函数解析式求出最小值,再解不等式即可.【小问1详解】方法1:因为,由题意得,即,所以时,即,所以,,对于任意设,所以,因为,又,所以而,所以,所以,所以函数在区间上是单调递减的.方法2:因为,由题意得,即,所以时,即,所以,,因为,所以函数图像的对称轴方程为,因为,所以,即,所以函数在上是单调递减的.【小问2详解】设,,因为函数对称轴为,①当即时,在上单调递减,,②当即时,,③当即时,,④当即时,在上单调递增,,综上可得:可知在上单调递减,在上单调递增,所以最小值为,对,恒成立,只需即可,解得,所以a的取值范围是.19、(1)(2)【解析】(1)设Q(x,y),根据PQ⊥MN得出,然后由PN∥MQ得出,解方程组即可求出Q的坐标;(2)设Q(x,0)由∠NQP=∠NPQ得出kNQ=﹣kNP,解方程求出Q的坐标,然后即可得出结果.【小问1详解】设Q(x,y),由已知得kMN=3,又PQ⊥MN,可得kMN×kPQ=﹣1即(x≠3)①由已知得kPN=﹣2,又PN∥MQ,可得kPN=kMQ,即(x≠1)②联立①②求解得x=0,y=1,∴Q(0,1);【小问2详解】设Q(x,0),∵∠NQP=∠NPQ,∴kNQ=﹣kNP,又∵kNQ,kNP=﹣2,∴2解得x=1,∴Q(1,0),又∵M(1,﹣1),∴MQ⊥x轴,故直线MQ的倾斜角为90°.20、(1);(2).【解析】(1)利用函数图像上的两个点的坐标列方程组,解方程组求得的值.(2)将原不等式分离常数,利用函数的单调性,求出的取值范围.【详解】(1)由于函数图像经过,,所以,解得,所以.(2)原不等式为,即在时恒成立,而在时单调递减,故在时有最小值为,故.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论