版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河南省驻马店经济开发区高级中学高二上数学期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某海关缉私艇在执行巡逻任务时,发现其所在位置正西方向20nmile处有一走私船只,正以30nmile/h的速度向北偏东30°的方向逃窜,若缉私艇突然发生机械故障,20min后才以的速度开始追赶,则在走私船只不改变航向和速度的情况下,缉私艇追上走私船只的最短时间为()A.1h B.C. D.2.已知等差数列的前n项和为,,,若(),则n的值为()A.15 B.14C.13 D.123.如图,在四棱锥中,底面ABCD是平行四边形,已知,,,,则()A. B.C. D.4.杨辉三角是二项式系数在三角形中的一种几何排列,在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中就有出现.在欧洲,帕斯卡(1623~1662)在1654年发现这一规律,比杨辉要迟了393年.如图所示,在“杨辉三角”中,从1开始箭头所指的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,…,则在该数列中,第37项是A.153 B.171C.190 D.2105.如图,一个圆锥形的空杯子上面放着一个半径为4.5cm的半球形的冰淇淋,若冰淇淋融化后正好盛满杯子,则杯子的高()A.9cm B.6cmC.3cm D.4.5cm6.如图,在四面体中,,,,D为BC的中点,E为AD的中点,则可用向量,,表示为()A. B.C. D.7.已知是双曲线的左焦点,圆与双曲线在第一象限的交点为,若的中点在双曲线的渐近线上,则此双曲线的离心率是()A. B.2C. D.8.若数列为等差数列,数列为等比数列,则下列不等式一定成立的是()A. B.C. D.9.如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是()A.圆 B.双曲线C.抛物线 D.椭圆10.已知实数x,y满足约束条件,则的最大值为()A. B.0C.3 D.511.有7名同学参加百米竞赛,预赛成绩各不相同,取前3名参加决赛,小明同学已经知道了自己的成绩,为了判断自己是否能进入决赛,他还需要知道7名同学成绩的()A.平均数 B.众数C.中位数 D.方差12.如图,在棱长为1的正方体中,点B到直线的距离为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.经过两点的双曲线的标准方程是________14.命题“,”是真命题,则的取值范围是________15.已知为坐标原点,等轴双曲线的右焦点为,点在双曲线上,由向双曲线的渐近线作垂线,垂足分别为、,则四边形的面积为______.16.已知正方形的边长为2,对部分以为轴进行翻折,翻折到,使二面角的平面角为直二面角,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱台的底面为正方形,面,(1)求证:平面;(2)若平面平面,求直线m与平面所成角的正弦值18.(12分)已知抛物线C:,过点且斜率为k的直线与抛物线C相交于P,Q两点.(1)设点B在x轴上,分别记直线PB,QB的斜率为.若,求点B的坐标;(2)过抛物线C的焦点F作直线PQ的平行线与抛物线C相交于M,N两点,求的值.19.(12分)平面直角坐标系中,过椭圆:右焦点的直线交M于A,B两点,P为AB的中点,且OP的斜率为.(1)求椭圆M的方程;(2)C,D为椭圆M上的两点,若四边形ACBD的对角线CD与AB垂直,求四边形ACBD面积的最大值.20.(12分)如图,已知椭圆的短轴端点为、,且,椭圆C的离心率,点,过点P的动直线l椭圆C交于不同的两点M、N与,均不重合),连接,,交于点T(1)求椭圆C的方程;(2)求证:当直线l绕点P旋转时,点T总在一条定直线上运动;(3)是否存在直线l,使得?若存在,求出直线l的方程;若不存在,请说明理由21.(12分)已知函数,曲线在处的切线方程为.(Ⅰ)求实数,的值;(Ⅱ)求在区间上的最值.22.(10分)某市为加强市民对新冠肺炎的知识了解,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),共5人,第2组[25,30),共35人,第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)求a的值;(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场宣传活动,且该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第3组至少有-名志愿者被抽中的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设小时后,相遇地点为,在三角形中根据题目条件得出,再在三角形中,由勾股定理即可求出.【详解】以缉私艇为原点,建立如下图所示的直角坐标系.图中走私船所在位置为,设缉私艇追上走私船的最短时间为,相遇地点为.则,走私船以的速度向北偏东30°的方向逃窜,60°.因为20min后缉私艇才以的速度开始追赶走私船,所以20min走私船行走了,到达.在三角形中,由余弦定理知:,则,所以.在三角形中,,,有:,化简得:,则.缉私艇追上走私船只的最短时间为1h.故选:A.点睛】2、B【解析】由已知条件列方程组求出,再由列方程求n的值【详解】设等差数列的公差为,则由,,得,解得,因为,所以,即,解得或(舍去),故选:B3、A【解析】利用空间向量加法法则直接求解【详解】连接BD,如图,则故选:A4、C【解析】根据“杨辉三角”找出数列1,2,3,3,6,4,10,5,…之间的关系即可。【详解】由题意可得从第3行起的每行第三个数:,所以第行的第三个数为在该数列中,第37项为第21行第三个数,所以该数列的第37项为故选:C【点睛】本题主要考查了归纳、推理的能力,属于中等题。5、A【解析】根据圆锥和球的体积公式以及半球的体积等于圆锥的体积,即可列式解出【详解】由题意可得,,解得.故选:A6、B【解析】利用空间向量的基本定理,用,,表示向量【详解】因为是的中点,是的中点,,故选:B7、A【解析】根据双曲线的几何性质和平面几何性质,建立关于a,b,c的方程,从而可求得双曲线的离心率得选项.【详解】由题意可设右焦点为,因为,且圆:,所以点在以焦距为直径的圆上,则,设的中点为点,则为的中位线,所以,则,又点在渐近线上,所以,且,则,,所以,所以,则在中,可得,,即,解得,所以,故选:A【点睛】方法点睛:(1)求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量的方程或不等式,利用和转化为关于e的方程或不等式,通过解方程或不等式求得离心率的值或取值范围(2)对于焦点三角形,要注意双曲线定义的应用,运用整体代换的方法可以减少计算量8、D【解析】对选项A,令即可检验;对选项B,令即可检验;对选项C,令即可检验;对选项D,设出等差数列的首项和公比,然后作差即可.【详解】若,则可得:,故选项A错误;若,则可得:,故选项B错误;若,则可得:,故选项C错误;不妨设的首项为,公差为,则有:则有:,故选项D正确故选:D9、D【解析】根据题意知,所以,故点P的轨迹是椭圆.【详解】由题意知,关于CD对称,所以,故,可知点P的轨迹是椭圆.【点睛】本题主要考查了椭圆的定义,属于中档题.10、D【解析】先画出可行域,由,得,作出直线,向上平移过点A时,取得最大值,求出点A的坐标,代入可求得结果【详解】不等式组表示的可行域,如图所示由,得,作出直线,向上平移过点A时,取得最大值,由,得,即,所以的最大值为,故选:D11、C【解析】根据中位数的性质,结合题设按成绩排序7选3,即可知还需明确的成绩数据信息.【详解】由题设,7名同学参加百米竞赛,要取前3名参加决赛,则成绩从高到低排列,确定7名同学成绩的中位数,即第3名的成绩便可判断自己是否能进入决赛.故选:C.12、A【解析】以为坐标原点,以为单位正交基底,建立空间直角坐标系,取,,利用向量法,根据公式即可求出答案.【详解】以为坐标原点,以为单位正交基底,建立如图所示的空间直角坐标系,则,,取,,则,,则点B到直线AC1的距离为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设双曲线的标准方程将点坐标代入求参数,即可确定标准方程.【详解】令,则,可得,令,则,无解.故双曲线的标准方程是.故答案为:.14、【解析】依题意可得,是真命题,参变分离得到在上有解,再利用构造函数利用函数的单调性计算可得.【详解】,等价于在上有解设,,则在上单调递减,在上单调递增,又,,所以,即故答案为:15、##【解析】求出双曲线的方程,可求得双曲线的两条渐近线方程,分析可知四边形为矩形,然后利用点到直线的距离公式以及矩形的面积公式可求得结果.【详解】因为双曲线为等轴双曲线,则,,可得,所以,双曲线的方程为,双曲线的渐近线方程为,则双曲线的两条渐近线互相垂直,则,,,所以,四边形为矩形,设点,则,不妨设点为直线上的点,则,,所以,.故答案为:.16、-2【解析】根据,则,根据条件求得向量夹角即可求得结果.【详解】由题知,,取的中点O,连接,如图所示,则,又二面角的平面角为直二面角,则,又,则,为等边三角形,从而,则,故答案为:-2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1):连结交交于点O,连结,,通过四棱台的性质以及给定长度证明,从而证出,利用线面平行的判定定理可证明面;(2)利用线面平行的性质定理以及基本事实可证明,即求与平面所成角的正弦值;通过条件以及面面垂直的判定定理可证明面面,则为与平面所成角,利用余弦定理求出余弦值,即可求出正弦值.【详解】(1)证明:连结交交于点O,连结,,由多面体为四棱台可知四点共面,且面面,面面,面面,∴,∵和均为正方形,,∴,所以为平行四边形,∴,面,面,∴平面(2)∵面,平面,平面,∴,又∵,∴∴求直线m与平面所成角可转化为求与平面所成角,∵和均为正方形,,且,∴,,∴,又∵面,∴∴面,∴面面,由面面,设O在面的投影为M,则,∴为与平面所成角,由,可得,又∵,∴∴,直线m与平面所成角的正弦值为.【点睛】思路点睛:(1)找两个平面的交线,可通过两个平面的交点找到,也可利用线面平行的性质找和交线的平行直线;(2)求直线和平面所成角,过直线上一点做平面的垂线,则垂足和斜足连线与直线所成角即为直线和平面所成角.18、(1)(2)【解析】(1)直线的方程为,其中,联立直线与抛物线方程,由韦达定理结合已知条件可求得点的坐标;(2)直线的方程为,利用倾斜角定义知,,联立直线与抛物线方程,利用弦长公式求得,进而得解.小问1详解】由题意,直线的方程为,其中.设,联立,消去得..,,即.,即.,,∴点的坐标为.【小问2详解】由题意,直线的方程为,其中,为倾斜角,则,设.联立,消去得...19、(1)(2)【解析】(1)设,,的中点为,利用“点差法”求解;(2)由求得A,B的坐标,进而得到的长,再根据,设直线的方程为,由,求得的长,然后由四边形的面积为求解.【小问1详解】解:把右焦点代入直线,得,设,,的中点为,则,,相减得,即,即,即.又,,则.又,解得,,故椭圆的方程为.【小问2详解】联立消去,可得,解得或,故交点为,.所以.因为,所以可设直线的方程为,,,联立消去,得到,因为直线与椭圆有两个不同的交点,则,解得,且,又,则.故四边形的面积为,故当时,取得最大值,最大值为.所以四边形的面积的最大值为.20、(1)(2)证明见解析;(3)不存在直线l,使得成立,理由见解析.【解析】(1)根据题意,列出方程组,求得,即可求得椭圆的方程;(2)设直线的方程为,联立方程组求得,设,根据和在同一条直线上,列出方程求得的值,即可求解;(3)设直线的为,把转化为,联立方程组求得,代入列方程,求得,即可得到结论.【小问1详解】解:由题意可得,解得,所以所求椭圆的方程为.【小问2详解】解:由题意,因为直线过点,可设直线的方程为,,联立方程组,整理得,可得,因为直线与椭圆有两个交点,所以,解得,设,因为在同一条直线上,则,①又由在同一条直线上,则,②由①+②3所以,整理得,解得,所以点在直线,即当直线l绕点P旋转时,点T总在一条定直线上运动.【小问3详解】解:由(2)知,点在直线上运动,即,设直线的方程为,且,又由且,可得,即,联立方程组,整理得,可得,代入可得,解得,即,此时直线的斜率不存在,不合题意,所以不存在直线l,使得成立.21
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 成人技能测试题及答案
- 高频电子企业面试题及答案
- 病历书写考试题附答案
- n1叉车考试试题及答案
- 影城员工考试题及答案
- 电大经济法律试题及答案
- 大一上西方经济学试题及答案
- 2026黑龙江大庆市大同区城市建设投资开发有限公司招聘劳务派遣人员12人参考题库附答案
- 中共广安市广安区肖溪镇纪律检查委员会选用2名片区纪检监督员的参考题库必考题
- 中央统战部直属事业单位2026年度应届高校毕业生招聘34人备考题库必考题
- 复方蒲公英注射液在痤疮中的应用研究
- 自动驾驶系统关键技术
- 淮安市2023-2024学年七年级上学期期末历史试卷(含答案解析)
- 完整工资表模板(带公式)
- 家长要求学校换老师的申请书
- 奇瑞汽车QC小组成果汇报材料
- 阑尾肿瘤-课件
- 正式员工派遣单
- 新员工入职申请表模板
- 中外新闻事业史课程教学大纲
- LY/T 1357-2008歧化松香
评论
0/150
提交评论