版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖南省株洲市攸县第四中学高一上数学期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“”是“幂函数为偶函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知全集,,,则()=()A.{} B.{}C.{} D.{}3.若,,,则有A. B.C. D.4.一个扇形的弧长与面积都是5,则这个扇形圆心角的弧度数为A. B.C. D.5.计算(16A.-1 B.1C.-3 D.36.将进货单价为40元的商品按60元一个售出时,能卖出400个.已知该商品每个涨价1元,其销售量就减少10个,为了赚得最大利润,售价应定为A.每个70元 B.每个85元C.每个80元 D.每个75元7.函数(且)的图象一定经过的点是()A. B.C. D.8.设函数,则的值为()A. B.C. D.189.设函数的最小正周期为,且在内恰有3个零点,则的取值范围是()A. B.C. D.10.已知函数.若关于x的方程在上有解,则实数m的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数在上的最小值为__________.12.已知幂函数f(x)是奇函数且在上是减函数,请写出f(x)的一个表达式________13.已知定义在上的偶函数,当时,若直线与函数的图象恰有八个交点,其横坐标分别为,,,,,,,,则的取值范围是___________.14.已知f(x)=mx3-nx+1(m,n∈R),若f(-a)=3,则f(a)=______15.若函数在区间上是单调递增函数,则实数的取值范围是_______.16.在平面直角坐标系中,动点P到两条直线与的距离之和等于2,则点P到坐标原点的距离的最小值为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某单位安装1个自动污水净化设备,安装这种净水设备的成本费(单位:万元)与管线、主体装置的占地面积x(单位:平方米)成正比,比例系数为0.1,为了保证正常用水,安装后采用净水装置净水和自来水公司供水互补的用水模式.假设在此模式下,安装后该单位每年向自来水公司缴纳水费为,记y为该单位安装这种净水设备费用与安装设备后每年向自来水公司缴水费之和(1)写出y关于x的函数表达式;(2)求x为多少时,y有最小值,并求出y的最小值18.已知(1)若p为真命题,求实数x的取值范围(2)若p为q成立的充分不必要条件,求实数a的取值范围19.画出函数f(x)=|log3x|的图像,并求出其值域、单调区间以及在区间上的最大值.20.已知函数(,且).(1)求的值,并证明不是奇函数;(2)若,其中e是自然对数的底数,证明:存在不为0的零点,并求.注:设x为实数,表示不超过x的最大整数.参考数据:,,,.21.计算(1)-(2)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据函数的奇偶性的定义和幂函数的概念,结合充分条件、必要条件的判定方法,即可求解.详解】由,即,解得或,当时,,此时函数的定义域为关于原点对称,且,所以函数为偶函数;当时,,此时函数的定义域为关于原点对称,且,所以函数为偶函数,所以充分性成立;反之:幂函数,则满足,解得或或,当时,,此时函数为偶函数;当时,,此时函数为偶函数,当时,,此时函数为奇函数函数,综上可得,实数或,即必要性成立,所以“”是“幂函数为偶函数”的充要条件.故选:C.2、D【解析】先求得,再求与集合的交集即可.【详解】因为全集,,,故可得,则().故选:.3、C【解析】根据指数函数和对数函数的单调性分别将与作比较,从而得到结果.【详解】本题正确选项:【点睛】本题考查根据指数函数、对数函数单调性比较大小的问题,常用方法是采用临界值的方式,通过与临界值的大小关系得到所求的大小关系.4、D【解析】,又,故选D考点:扇形弧长公式5、B【解析】原式=故选B6、A【解析】设定价每个元,利润为元,则,故当,时,故选A.考点:二次函数的应用.7、D【解析】由函数解析式知当时无论参数取何值时,图象必过定点即知正确选项.【详解】由函数解析式,知:当时,,即函数必过,故选:D.【点睛】本题考查了指数型函数过定点,根据解析式分析自变量取何值时函数值不随参数变化而变化,此时所得即为函数的定点.8、B【解析】根据分段函数的不同定义域对应的函数解析式,进行代入计算即可.【详解】,故选:B9、D【解析】根据周期求出,结合的范围及,得到,把看做一个整体,研究在的零点,结合的零点个数,最终列出关于的不等式组,求得的取值范围【详解】因为,所以.由,得.当时,,又,则因为在上的零点为,,,,且在内恰有3个零点,所以或解得.故选:D10、C【解析】先对函数化简变形,然后由在上有解,可知,所以只要求出在上即可【详解】,由,得,所以,所以,即,由在上有解,可知,所以,得,氢实数m的取值范围是,故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】正切函数在给定定义域内单调递增,则函数的最小值为.12、【解析】由题意可知幂函数中为负数且为奇数,从而可求出解析式【详解】因为幂函数是奇函数且在上是减函数,所以为负数且为奇数,所以f(x)的一个表达式可以是(答案不唯一),故答案为:(答案不唯一)13、【解析】先作出函数的大致图象,由函数性质及图象可知八个根是两两关于轴对称的,因此分析可得,,进而将转化为形式,再数形结合,求得结果.【详解】作出函数的图象如图:直线与函数的图象恰有八个交点,其横坐标分别为,,,,,,,,不妨设从左到右分别是,,,,,,,,则,由函数解析式以及图象可知:,即,同理:;由图象为偶函数,图象关于轴对称可知:,所以又因为是方程的两根,所以,而,所以,故,即,故答案为:14、【解析】直接证出函数奇偶性,再利用奇偶性得解【详解】由题意得,所以,所以为奇函数,所以,所以【点睛】本题是函数中的给值求值问题,一般都是利用函数的周期性和奇偶性把未知的值转化到已知值上,若给点函数为非系非偶函数可试着构造一个新函数为奇偶函数从而求解15、【解析】先求出抛物线的对称轴方程,然后由题意可得,解不等式可求出的取值范围【详解】解:函数的对称轴方程为,因为函数在区间上是单调递增函数,所以,解得,故答案为:16、【解析】∵3x﹣y=0与x+3y=0的互相垂直,且交点为原点,∴设点P到两条直线的距离分别为a,b,则a≥0,b≥0,则a+b=2,即b=2﹣a≥0,得0≤a≤2,由勾股定理可知===,∵0≤a≤2,∴当a=1时,的距离,故答案为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)当时,y有最小值为3.【解析】(1)根据y为该单位安装这种净水设备费用与安装设备后每年向自来水公司缴水费之和即可建立函数模型;(2)利用均值不等式即可求解.【小问1详解】解:由题意,y关于x的函数表达式为;【小问2详解】解:因为,当且仅当,即时等号成立.所以当时,y有最小值为3.18、(1)(2)【解析】(1)根据命题为真可求不等式的解.(2)根据条件关系可得对应集合的包含关系,从而可求参数的取值范围.【小问1详解】因为p为真命题,故成立,故.【小问2详解】对应的集合为,对应的集合为,因为p为q成立的充分不必要条件,故为的真子集,故(等号不同时取),故.19、图象见解析,值域为[0,+∞),单调递增区间[1,+∞),单调递减区间是(0,1),最大值为2.【解析】由于f(x)=|log3x|=所以在[1,+∞)上f(x)图像与y=log3x的图像相同,在(0,1)上的图像与y=log3x的图像关于x轴对称,由此可画出函数的图像,再结合函数的图像可求出函数的值域和单调区间,及最值【详解】因为f(x)=|log3x|=所以在[1,+∞)上f(x)的图像与y=log3x的图像相同,在(0,1)上的图像与y=log3x的图像关于x轴对称,据此可画出其图像,如图所示.由图像可知,函数f(x)的值域为[0,+∞),单调递增区间是[1,+∞),单调递减区间是(0,1).当x∈时,f(x)在区间上是单调递减的,在(1,6]上是单调递增的.又f=2,f(6)=log36<2,故f(x)在区间上的最大值为2.【点睛】此题考查含绝对值对数型函数的图像和性质,考查数形结合的思想,属于基础题20、(1),证明见解析(2)证明见解析,【解析】(1)利用,可证明;(2)利用零点的判定方法证明(5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- APP运营专员招聘面试题及答案
- “梦工场”招商银行南通分行2026寒假实习生招聘备考题库附答案
- 中共赣州市赣县区委政法委下属事业单位面向全区选调工作人员参考题库附答案
- 乐山市公安局2025年第四批次警务辅助人员招聘(40人)考试备考题库必考题
- 北京市石景山区教育系统教育人才库教师招聘备考题库附答案
- 山东高速集团有限公司2025年下半年校园招聘(339人) 考试备考题库附答案
- 广安市关于2025年社会化选聘新兴领域党建工作专员的考试备考题库必考题
- 永丰县2025年退役士兵选调考试【25人】考试备考题库必考题
- 浙江国企招聘-2025杭州临平环境科技有限公司公开招聘49人参考题库附答案
- 荥经县财政局关于荥经县县属国有企业2025年公开招聘工作人员的(14人)参考题库附答案
- 2025年温州肯恩三位一体笔试英语真题及答案
- 云南师大附中2026届高三高考适应性月考卷(六)历史试卷(含答案及解析)
- PCR技术在食品中的应用
- 输液渗漏处理课件
- 教育培训行业发展趋势与机遇分析
- 2025医疗器械经营质量管理体系文件(全套)(可编辑!)
- 物业与商户装修协议书
- 湖南铁道职业技术学院2025年单招职业技能测试题
- GB/T 46318-2025塑料酚醛树脂分类和试验方法
- 果农水果出售合同范本
- 小学三年级数学选择题专项测试100题带答案
评论
0/150
提交评论