安徽省黄山市“八校联盟”2026届高二数学第一学期期末统考试题含解析_第1页
安徽省黄山市“八校联盟”2026届高二数学第一学期期末统考试题含解析_第2页
安徽省黄山市“八校联盟”2026届高二数学第一学期期末统考试题含解析_第3页
安徽省黄山市“八校联盟”2026届高二数学第一学期期末统考试题含解析_第4页
安徽省黄山市“八校联盟”2026届高二数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省黄山市“八校联盟”2026届高二数学第一学期期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的离心率为,直线与椭圆交于两点,为坐标原点,且,则椭圆的方程为A B.C. D.2.二次方程的两根为2,,那么关于的不等式的解集为()A.或 B.或C. D.3.在直三棱柱中,,M,N分别是,的中点,,则AN与BM所成角的余弦值为()A. B.C. D.4.若,则实数的取值范围是()A. B.C. D.5.若函数,则()A. B.C.0 D.16.若函数有两个不同的极值点,则实数的取值范围是()A. B.C. D.7.若曲线的一条切线与直线垂直,则的方程为()A. B.C. D.8.已知数列为等比数列,,则的值为()A. B.C. D.29.双曲线的渐近线方程是()A. B.C. D.10.在等差数列中,其前项和为.若,是方程的两个根,那么的值为()A.44 B.C.66 D.11.在等差数列中,,,则的取值范围是()A. B.C. D.12.如图,若斜边长为的等腰直角(与重合)是水平放置的的直观图,则的面积为()A.2 B.C. D.8二、填空题:本题共4小题,每小题5分,共20分。13.双曲线的离心率______.14.已知圆锥的侧面积为,若其过轴的截面为正三角形,则该圆锥的母线的长为___________.15.若命题“”是假命题,则a的取值范围是_______.16.在正方体中,,,P,F分别是线段,的中点,则点P到直线EF的距离是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的短轴长为2,左、右焦点分别为,,过且垂直于长轴的弦长为1(1)求椭圆C的标准方程;(2)若A,B为椭圆C上位于x轴同侧的两点,且,共线,求四边形的面积的最大值18.(12分)如图,在四棱锥中,平面平面ABCD,底面ABCD是矩形,,,直线PA与CD所成角为60°.(1)求直线PD与平面ABCD所成角的正弦值;(2)求二面角的正弦值.19.(12分)已知数列的首项,前n项和为,且满足.(1)求证:数列是等比数列;(2)设,求数列的前n项和.20.(12分)已知圆,其圆心在直线上.(1)求的值;(2)若过点的直线与相切,求的方程.21.(12分)在四棱锥中,平面,底面是边长为2的菱形,分别为的中点.(1)证明:平面;(2)求三棱锥的体积.22.(10分)某公司有员工人,对他们进行年龄和学历情况调查,其结果如下:现从这名员工中随机抽取一人,设“抽取的人具有本科学历”,“抽取的人年龄在岁以下”,试求:(1);(2);(3).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据等腰直角三角形的性质可得,将代入椭圆方程,结合离心率为以及性质列方程组求得与的值,从而可得结果.【详解】设直线与椭圆在第一象限的交点为,因为,所以,即,由可得,,故所求椭圆的方程为.故选D.【点睛】本题主要考查椭圆的标准方程与性质,以及椭圆离心率的应用,意在考查对基础知识掌握的熟练程度,属于中档题.2、B【解析】根据,确定二次函数的图象开口方向,再由二次方程的两根为2,,写出不等式的解集.【详解】因为二次方程的两根为2,,又二次函数的图象开口向上,所以不等式的解集为或,故选:B3、D【解析】构建空间直角坐标系,根据已知条件求AN与BM对应的方向向量,应用空间向量夹角的坐标表示求AN与BM所成角的余弦值.【详解】建立如下图所示的空间直角坐标系,∴,,,,∴,,∴,所以AN与BM所成角的余弦值为.故选:D4、B【解析】由题意可知且,构造函数,可得出,由函数的单调性可得出,利用导数求出函数的最小值,可得出关于的不等式,由此可解得实数的取值范围.【详解】因为,则且,由已知可得,构造函数,其中,,所以,函数为上的增函数,由已知,所以,,可得,构造函数,其中,则.当时,,此时函数单调递减,当时,,此时函数单调递增,则,所以,,解得.故选:B.5、A【解析】构造函数,再用积的求导法则求导计算得解.【详解】令,则,求导得:,所以.故选:A6、D【解析】计算,然后等价于在(0,+∞)由2个不同的实数根,然后计算即可.【详解】的定义域是(0,+∞),,若函数有两个不同的极值点,则在(0,+∞)由2个不同的实数根,故,解得:,故选:D.【点睛】本题考查根据函数极值点个数求参,考查计算能力以及思维转变能力,属基础题.7、A【解析】两直线垂直,斜率之积为,曲线与直线相切,联立方程令.【详解】法一:直线,所以,所以切线的,设切线的方程为,联立方程,所以,令,解得,所以切线方程为.法二:直线,所以,所以切线的,,所以令,所以,带入曲线方程得切点坐标为,所以切线方程为,化简得.故选:A.8、B【解析】根据等比数列的性质计算.【详解】由等比数列的性质可知,且等比数列奇数项的符号相同,所以,即.故选:B9、A【解析】先将双曲线的方程化为标准方程得,再根据双曲线渐近线方程求解即可.【详解】解:将双曲线的方程化为标准方程得,所以,所以其渐近线方程为:,即.故选:A.10、D【解析】由,是方程的两个根,利用韦达定理可知与的和,根据等差数列的性质可得与的和等于,即可求出的值,然后再利用等差数列的性质可知等于的11倍,把的值代入即可求出的值.【详解】因为,是方程的两个根,所以,而,所以,则,故选:.11、A【解析】根据题设可得关于的不等式,从而可求的取值范围.【详解】设公差为,因为,,所以,即,从而.故选:A.12、C【解析】由斜二测还原图形计算即可求得结果.【详解】在斜二测直观图中,由为等腰直角三角形,,可得,.还原原图形如图:则,则.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据双曲线方程直接可得离心率.【详解】由,可得,,故,离心率,故答案为:.14、【解析】利用圆锥的结构特征及侧面积公式即得.【详解】设圆锥的底面半径为r,圆锥的母线为l,又圆锥过轴的截面为正三角形,圆锥的侧面积为,∴,∴.故答案为:.15、【解析】依题意可得是真命题,参变分离得到,再利用基本不等式计算可得;【详解】解:因为命题“”是假命题,所以命题“”是真命题,即,所以,因为,当且仅当即时取等号,所以,即故答案:16、【解析】以A为坐标原点建立空间直角坐标系,利用向量法即可求解点P到直线EF的距离.【详解】解:如图,以A为坐标原点,,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,因为,所以,,,所以,,所以点P到直线EF的距离.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)2【解析】(1)根据已知条件求得,由此求得椭圆的标准方程.(2)延长,交椭圆C于点.设出直线的方程并与椭圆方程联立,化简写出根与系数关系,根据对称性求得四边形的面积的表达式,利用换元法,结合基本不等式求得四边形的面积的最大值.【小问1详解】由题可知,即,因为过且垂直于长轴的弦长为1,所以,所以所以椭圆C的标准方程为【小问2详解】因为,共线,所以延长,交椭圆C于点.设,由(1)可知,可设直线的方程为联立,消去x可得,所以,由对称性可知设与间的距离为d,则四边形的面积令,则.因为,当且仅当时取等号,所以,即四边形的面积的最大值为2【点睛】在椭圆、双曲线、抛物线中,求三角形、四边形面积的最值问题,求解策略是:首先结合弦长公式、点到直线距离公式等求得面积的表达式;然后利用基本不等式、二次函数的性质等知识来求得最值.18、(1)(2)【解析】(1),所以PA与AB所成的锐角或直角等于PA与CD所成角,然后过P在平面PAB内作,可得平面ABCD,从而可求出答案.(2)可证平面PAB,过B在平面PAB内作,连结CF,则是二面角的平面角,从而可求解.【小问1详解】因为,所以PA与AB所成的锐角或直角等于PA与CD所成角,可知,是正三角形.过P在平面PAB内作,垂足为E,因为平面平面ABCD,所以平面ABCD,是直线PD与平面ABCD所成角.在正中,,,所以,故直线PD与平面ABCD所成角的正弦值为.【小问2详解】因为,平面平面ABCD,平面平面ABCD又平面ABCD,所以平面PAB.又平面PAB.则过B在平面PAB内作,垂足为F,连结CF,又,则平面,又平面所以,所以是二面角的平面角.因为,,所以,从而所以二面角正弦值为.19、(1)证明见解析(2)【解析】(1)当时,由,得,两式相减化简可得,再对等式两边同时减去1,化简可证得结论,(2)由(1)得,然后利用分组求和可求出【小问1详解】由已知得,.当时,.两式相减得,.于是,即,又,,,所以满足上式,所以对都成立,故数列是等比数列.【小问2详解】由(1)得,,.20、(1)(2)或【解析】(1)将圆的一般方程化为标准方程,求出圆心,代入直线方程即可求解.(2)设直线的方程为:,利用圆心到直线的距离即可求解.【小问1详解】圆的标准方程为:,所以,圆心为由圆心在直线上,得.所以,圆的方程为:【小问2详解】由题意可知直线的斜率存在,设直线的方程为:,即由于直线和圆相切,得解得:所以,直线方程为:或.21、(1)证明见解析(2)【解析】(1)取的中点,利用三角形中位线定理可证明BG//EF,由线线平行,可得线面平行;(2根据图像可得,以为底面,证明为高,利用三棱锥的体积公式,可得答案;【小问1详解】取的中点,因为为的中点,所以且,又因为为的中点,四边形为菱形,所以且,所以且,故四边形BFEG为平行四边形,所以BG//EF,因为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论