版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届佛山市重点中学数学高一上期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在下列四个正方体中,、为正方体两个顶点,、、为所在棱的中点,则在这四个正方体中,直线与平面不平行的是()A. B.C. D.2.已知是定义在上的偶函数,那么的最大值是()A.0 B.C. D.13.直线与直线互相垂直,则这两条直线的交点坐标为()A. B.C. D.4.要得到函数的图象,只需把函数的图象上所有的点()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度5.已知集合,,则A.或 B.或C. D.或6.已知函数满足对任意实数,都有成立,则的取值范围是()A B.C. D.7.如图,PO是三棱锥P-ABC底面ABC的垂线,垂足为O①若PA⊥BC,PB⊥AC,则点O是△ABC的垂心;②若PA=PB=PC,则点O是△ABC的外心;③若∠PAB=∠PAC,∠PBA=∠PBC,则点O是△ABC的内心;④过点P分别做边AB,BC,AC的垂线,垂足分别为E,F,G,若PE=PF=PG,则点O是△ABC的重心以上推断正确的个数是()A.1 B.2C.3 D.48.设全集,集合,则()A. B.C. D.9.已知集合,或,则()A.或 B.C. D.或10.最小值是A.-1 B.C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.写出一个值域为,在区间上单调递增的函数______12.已知函数是奇函数,当时,,若,则m的值为______.13.已知,若,使得,若的最大值为,最小值为,则__________14.已知符号函数sgn(x),则函数f(x)=sgn(x)﹣2x的所有零点构成的集合为_____15.若在上恒成立,则k的取值范围是______.16.函数零点的个数为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的三个顶点(1)求边上高所在直线的方程;(2)求的面积18.已知直线(1)求直线的斜率;(2)若直线m与平行,且过点,求m方程.19.已知函数(1)若函数图像关于直线对称,且,求的值;(2)在(1)的条件下,当时,求函数的值域.20.榴弹炮是一种身管较短,弹道比较弯曲,适合于打击隐蔽目标和地面目标的野战炮,是地面炮兵的主要炮种之一.为中国共产党建党100周年献礼,某军工研究所对某类型榴弹炮进行了改良.如图所示,建立平面直角坐标系,x轴在地平面上,y轴垂直于地平面,单位长度为.改良后的榴弹炮位于坐标原点.已知该炮弹发射后的轨迹在方程表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标(1)求该类型榴弹炮的最大射程;(2)证明:该类型榴弹炮发射的高度不会超过21.已知函数,()的最小周期为.(1)求的值及函数在上的单调递减区间;(2)若函数在上取得最小值时对应的角度为,求半径为3,圆心角为的扇形的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用线面平行判定定理可判断A、B、C选项的正误;利用线面平行的性质定理可判断D选项的正误.【详解】对于A选项,如下图所示,连接,在正方体中,且,所以,四边形为平行四边形,则,、分别为、的中点,则,,平面,平面,平面;对于B选项,连接,如下图所示:在正方体中,且,所以,四边形为平行四边形,则,、分别为、的中点,则,,平面,平面,平面;对于C选项,连接,如下图所示:在正方体中,且,所以,四边形为平行四边形,则,、分别为、中点,则,,平面,平面,平面;对于D选项,如下图所示,连接交于点,连接,连接交于点,若平面,平面,平面平面,则,则,由于四边形为正方形,对角线交于点,则为的中点,、分别为、的中点,则,且,则,,则,又,则,所以,与平面不平行;故选:D.【点睛】判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(,,),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(,).2、C【解析】∵f(x)=ax2+bx是定义在[a-1,2a]上偶函数,∴a-1+2a=0,∴a=.又f(-x)=f(x),∴b=0,∴,所以.故选C.3、B【解析】时,直线分别化为:,此时两条直线不垂直.时,利用两条直线垂直可得:,解得.联立方程解出即可得出.【详解】时,直线分别化为:,此时两条直线不垂直.时,由两条直线垂直可得:,解得.综上可得:.联立,解得,.∴这两条直线的交点坐标为.故选:【点睛】本题考查了直线相互垂直、分类讨论方法、方程的解法,考查了推理能力与计算能力,属于基础题.4、C【解析】根据三角函数图象的平移变换求解即可.【详解】由题意,为得到函数的图象,只需把函数的图象上所有的点向左平移个单位长度即可.故选:C5、A【解析】进行交集、补集的运算即可.【详解】;,或故选A.【点睛】考查描述法的定义,以及交集、补集的运算.6、C【解析】易知函数在R上递增,由求解.【详解】因为函数满足对任意实数,都有成立,所以函数在R上递增,所以,解得,故选:C7、C【解析】①由题意得出AO⊥BC,BO⊥BC,点O是△ABC的垂心;②若PA=PB=PC,则AO=BO=CO,点O是△ABC的外心;③由题意得出AO是∠BAC的平分线,BO是∠ABC的平分线,O是△ABC的内心;④若PE=PF=PG,则OE=OF=OG,点O是△ABC的内心【详解】对于①,PO⊥底面ABC,∴PO⊥BC,又PA⊥BC,∴BC⊥平面PAO,∴AO⊥BC;同理PB⊥AC,得出BO⊥BC,∴点O是△ABC的垂心,①正确;对于②,若PA=PB=PC,由此推出Rt△PAO≌Rt△PBO≌Rt△PCO,∴AO=BO=CO,点O是△ABC的外心,②正确;对于③,若∠PAB=∠PAC,且PO⊥底面ABC,则AO是∠BAC的平分线,同理∠PBA=∠PBC时BO是∠ABC平分线,∴点O是△ABC的内心,③正确;对于④,过点P分别做边AB,BC,AC的垂线,垂足分别为E,F,G,若PE=PF=PG,则OE=OF=OG,点O是△ABC的内心,④错误综上,正确的命题个数是3故选C【点睛】本题主要考查了空间中的直线与平面的垂直关系应用问题,是中档题8、A【解析】根据补集定义计算.【详解】因为集合,又因为全集,所以,.故选:A.【点睛】本题考查补集运算,属于简单题.9、A【解析】应用集合的并运算求即可.【详解】由题设,或或.故选:A10、B【解析】∵,∴当sin2x=-1即x=时,函数有最小值是,故选B考点:本题考查了三角函数的有界性点评:熟练掌握二倍角公式及三角函数的值域是解决此类问题的关键,属基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】综合考虑值域与单调性即可写出满足题意的函数解析式.【详解】,理由如下:为上的减函数,且,为上的增函数,且,,故答案为:12、【解析】由奇函数可得,则可得,解出即可【详解】因为是奇函数,,所以,即,解得故答案为:【点睛】本题考查利用奇偶性求值,考查已知函数值求参数13、【解析】作出函数的图像,计算函数的对称轴,设,数形结合判断得时,取最小值,时,取最大值,再代入解析式从而求解出另外两个值,从而得和,即可求解.【详解】作出函数的图像如图所示,令,则函数的对称轴为,由图可知函数关于,,对称,设,则当时,取最小值,此时,可得,故;当时,取最大值,此时,可得,故,所以.故答案为:【点睛】解答该题的关键是利用数形结合,利用三角函数的对称性与周期性判断何时取得最大值与最小值,再代入计算.14、【解析】根据的取值进行分类讨论,得到等价函数后分别求出其零点,然后可得所求集合【详解】①当x>0时,函数f(x)=sgn(x)﹣2x=1﹣2x,令1﹣2x=0,得x=,即当x>0时,函数f(x)的零点是;②当x=0时,函数f(x)=0,故函数f(x)的零点是0;③当x<0时,函数f(x)=﹣1﹣2x,令﹣1﹣2x=0,得x=,即当x<0时,函数f(x)的零点是综上可得函数f(x)=sgn(x)﹣x的零点的集合为:故答案为【点睛】本题主要考查函数零点的求法,解题的关键是根据题意得到函数的解析式,考查转化思想、分类讨论思想,是基础题15、【解析】首先参变分离得到在上恒成立,接着分段求出函数的最小值,最后给出k的取值范围即可.【详解】因为在上恒成立,所以在上恒成立,当时,,所以,所以,所以;当时,,所以,所以,所以;综上:k的取值范围为.故答案为:.【点睛】本题是含参数的不等式恒成立问题,此类问题都可转化为最值问题,即f(x)<a恒成立⇔a>f(x)max,f(x)>a恒成立⇔a<f(x)min.16、2【解析】将函数的零点的个数转化为与的图象的交点个数,在同一直角坐标系中画出图象即可得答案.【详解】解:令,这,则函数的零点的个数即为与的图象的交点个数,如图:由图象可知,与的图象的交点个数为2个,即函数的零点的个数为2.故答案为:2.【点睛】本题考查函数零点个数问题,可转化为函数图象交点个数,考查学生的作图能力和转化能力,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);⑵8.【解析】(1)设BC边的高所在直线为l,由斜率公式求出KBC,根据垂直关系得到直线l的斜率Kl,用点斜式求出直线l的方程,并化为一般式(2)由点到直线距离公式求出点A(﹣1,4)到BC的距离d,由两点间的距离公式求出|BC|,代入△ABC的面积公式求出面积S的值试题解析:(1)设边上高所在直线为,由于直线的斜率所以直线的斜率.又直线经过点,所以直线的方程为,即⑵边所在直线方程为:,即点到直线的距离,又.18、(1);(2).【解析】(1)将直线变形为斜截式即可得斜率;(2)由平行可得斜率,再由点斜式可得结果.【详解】(1)由,可得,所以斜率为;(2)由直线m与平行,且过点,可得m的方程为,整理得:.19、(1)w=1;(2)[0,].【解析】(1)求出函数的对称轴,求出求的值.(2)根据x的范围,利用三角函数的图像和性质求出f(x)的范围得解.【详解】(1)∵函数f(x)的图象关于直线对称,∴kπ,k∈Z,∴ω=1k,k∈Z,∵ω∈(0,2],∴ω=1,(2)f(x)=sin(2x),∵0≤x,∴2x,∴sin(2x)≤1,∴0≤f(x),∴函数f(x)的值域是[0,]【点睛】本题考查了正弦函数的单调性、值域问题,熟练掌握三角函数的性质是解题的关键20、(1)(2)证明见解析【解析】(1)解一元二次方程即可求得该类型榴弹炮的最大射程;(2)以二次函数在给定区间求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医院招聘放射专业试题及答案
- 怒江傈僳族自治州贡山独龙族怒族自治县辅警公共基础知识题库(附答案)
- 宿迁市宿豫区辅警招聘警务辅助人员考试题库真题试卷公安基础知识及答案
- 数控编程四级试题及答案
- 规培护士院感防控培训考试题及答案
- 医院检验科试题含答案
- 事业单位公共基础知识简答题及答案
- 基金专场考试题库及答案
- 美团考试题库及答案
- 防火安全测试题及答案
- 2026重庆高新开发建设投资集团招聘3人备考考试试题及答案解析
- 老年人管理人员培训制度
- 2025年湖南常德市鼎城区面向全市选调8名公务员备考题库及答案详解(新)
- 2026年高考时事政治时事政治考试题库及答案(名校卷)
- 2026四川成都市锦江区国有企业招聘18人笔试备考试题及答案解析
- 特种工安全岗前培训课件
- 2026届福建省三明市第一中学高三上学期12月月考历史试题(含答案)
- (正式版)DB51∕T 3342-2025 《炉灶用合成液体燃料经营管理规范》
- 2026北京海淀初三上学期期末语文试卷和答案
- 2025学年度人教PEP五年级英语上册期末模拟考试试卷(含答案含听力原文)
- 医院医院医院后勤管理
评论
0/150
提交评论