科大附中2026届高二数学第一学期期末学业水平测试模拟试题含解析_第1页
科大附中2026届高二数学第一学期期末学业水平测试模拟试题含解析_第2页
科大附中2026届高二数学第一学期期末学业水平测试模拟试题含解析_第3页
科大附中2026届高二数学第一学期期末学业水平测试模拟试题含解析_第4页
科大附中2026届高二数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

科大附中2026届高二数学第一学期期末学业水平测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将函数图象上所有点横坐标伸长到原来的2倍,纵坐标不变,再将所得图象向右平移个单位长度,得到函数的图象,则()A. B.C. D.2.为了防控新冠病毒肺炎疫情,某市疾控中心检测人员对外来入市人员进行核酸检测,人员甲、乙均被检测.设命题为“甲核酸检测结果为阴性”,命题为“乙核酸检测结果为阴性”,则命题“至少有一位人员核酸检测结果不是阴性”可表示为()A. B.C. D.3.已知F是椭圆C的一个焦点,B是短轴的一个端点,直线BF与椭圆C的另一个交点为D,且,则C的离心率为()A. B.C. D.4.已知,则条件“”是条件“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件.5.如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是A. B.C. D.6.如图,函数的图象在P点处的切线方程是,若点的横坐标是5,则()A. B.1C.2 D.07.设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为()A.4 B.8C.16 D.328.饕餮(tāotiè)纹,青铜器上常见的花纹之一,盛行于商代至西周早期,最早出现在距今五千年前长江下游地区的良渚文化玉器上.有人将饕餮纹的一部分画到了方格纸上,如图所示,每个小方格的边长为,有一点从点出发每次向右或向下跳一个单位长度,且向右或向下跳是等可能性的,那么它经过次跳动后恰好是沿着饕餮纹的路线到达点的概率为()A. B.C. D.9.直线过点且与双曲线仅有一个公共点,则这样的直线有()A.1条 B.2条C.3条 D.4条10.已知等边三角形的一个顶点在椭圆E上,另两个顶点位于E的两个焦点处,则E的离心率为()A. B.C. D.11.命题P:ax2+2x﹣1=0有实数根,若¬p是假命题,则实数a的取值范围是()A.{a|a<1} B.{a|a≤﹣1}C.{a|a≥﹣1} D.{a|a>﹣1}12.正数a,b满足,若不等式对任意实数x恒成立,则实数m的取值范围是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某中学高三(2)班甲,乙两名同学自高中以来每次考试成绩的茎叶图如图所示,则甲的中位数与乙的极差的和为___________.14.已知曲线在点处的切线的斜率为,则______15.圆上的点到直线的距离的最大值为__________.16.在公差不为0的等差数列中,为其前n项和,若,则正整数______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左焦点为,上顶点为,直线与椭圆的另一个交点为A(1)求点A的坐标;(2)过点且斜率为的直线与椭圆交于,两点(均与A,不重合),过点与轴垂直的直线分别交直线,于点,,证明:点,关于轴对称18.(12分)如图,在三棱锥中,侧面为等边三角形,,,平面平面,为的中点.(1)求证:;(2)若,求二面角的大小.19.(12分)如图,正方形和四边形所在的平面互相垂直,.(1)求证:平面;(2)求平面与平面的夹角.20.(12分)已知数列是正项数列,,且.(1)求数列的通项公式;(2)设,数列的前项和为,若对恒成立,求实数的取值范围.21.(12分)已知,p:,q:(1)若p是q的充分不必要条件,求实数m的取值范围;(2)若,“p或q”为真命题,“p且q”为假命题,求实数x的取值范围22.(10分)已知数列的前项和为,且.(1)求的通项公式;(2)求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据三角函数图象的变换,由逆向变换即可求解.【详解】由已知的函数逆向变换,第一步,向左平移个单位长度,得到的图象;第二步,图象上所有点的横坐标缩短到原来的,纵坐标不变,得到的图象,即的图象.故.故选:A2、D【解析】表示出和,直接判断即可.【详解】命题为“甲核酸检测结果为阴性”,则命题为“甲核酸检测结果不是阴性”;命题为“乙核酸检测结果为阴性”,则命题为“乙核酸检测结果不是阴性”.故命题“至少有一位人员核酸检测结果不是阴性”可表示为.故选D.3、A【解析】设,根据得,代入椭圆方程即可求得离心率.【详解】设椭圆方程,所以,设,所以,所以,在椭圆上,所以,.故选:A4、A【解析】若命题,则p是q的充分不必要条件,q是p的必要不充分条件【详解】因为,所以,所以.故选:A5、A【解析】如图:如图,取小圆上一点,连接并延长交大圆于点,连接,,则在小圆中,,在大圆中,,根据大圆的半径是小圆半径的倍,可知的中点是小圆转动一定角度后的圆心,且这个角度恰好是,综上可知小圆在大圆内壁上滚动,圆心转过角后的位置为点,小圆上的点,恰好滚动到大圆上的也就是此时的小圆与大圆的切点.而在小圆中,圆心角(是小圆与的交点)恰好等于,则,而点与点其实是同一个点在不同时刻的位置,则可知点与点是同一个点在不同时刻的位置.由于的任意性,可知点的轨迹是大圆水平的这条直径.类似的可知点的轨迹是大圆竖直的这条直径.故选A.6、C【解析】函数的图象在点P处的切线方程是,所以,在P处的导数值为切线的斜率,2,故选C考点:本题主要考查导数的几何意义点评:简单题,切线的斜率等于函数在切点的导函数值7、B【解析】因为,可得双曲线的渐近线方程是,与直线联立方程求得,两点坐标,即可求得,根据的面积为,可得值,根据,结合均值不等式,即可求得答案.【详解】双曲线的渐近线方程是直线与双曲线的两条渐近线分别交于,两点不妨设为在第一象限,在第四象限联立,解得故联立,解得故面积为:双曲线其焦距为当且仅当取等号的焦距的最小值:故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.8、B【解析】本题首先可根据题意列出次跳动的所有基本事件,然后找出沿着饕餮纹的路线到达点的事件,最后根据古典概型的概率计算公式即可得出结果.【详解】点从点出发,每次向右或向下跳一个单位长度,次跳动的所有基本事件有:(右,右,右)、(右,右,下)、(右,下,右)、(下,右,右)、(右,下,下)、(下,右,下)、(下,下,右)、(下,下,下),沿着饕餮纹的路线到达点的事件有:(下,下,右),故到达点的概率,故选:B.9、C【解析】根据直线的斜率存在与不存在,分类讨论,结合双曲线的渐近线的性质,即可求解.【详解】当直线的斜率不存在时,直线过双曲线的右顶点,方程为,满足题意;当直线的斜率存在时,若直线与两渐近线平行,也能满足与双曲线有且仅有一个公共点.综上可得,满足条件的直线共有3条.故选:C.【点睛】本题主要考查了直线与双曲线的位置关系,以及双曲线的渐近线的性质,其中解答中忽视斜率不存在的情况是解答的一个易错点,着重考查了分析问题和解答问题的能力,以及分类讨论思想的应用,属于基础题.10、B【解析】根据已知条件求得的关系式,从而求得椭圆的离心率.【详解】依题意可知,所以.故选:B11、C【解析】根据是假命题,判断出是真命题.对分成,和两种情况,结合方程有实数根,求得的取值范围.详解】┐p是假命题,则p是真命题,∴ax2+2x﹣1=0有实数根,当a=0时,方程为2x﹣1=0,解得x=0.5,有根,符合题意;当a≠0时,方程有根,等价于△=4+4a≥0,∴a≥﹣1且,综上所述,a的可能取值为a≥﹣1故选:C【点睛】本小题主要考查根据命题否定的真假性求参数,属于基础题.12、A【解析】利用基本不等式求得的最小值,把问题转化为恒成立的类型,求解的最大值即可.【详解】,,且a,b为正数,,当且仅当,即时,,若不等式对任意实数x恒成立,则对任意实数x恒成立,即对任意实数x恒成立,,,故选:A【点睛】本题主要考查了恒成立问题,基本不等式求最值,二次函数求最值,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、111【解析】求出甲的中位数和乙的极差即得解.【详解】解:由题得甲的中位数为,乙的极差为,所以它们的和为.故答案为:11114、【解析】对求导,根据题设有且,即可得目标式的值.【详解】由题设,且定义域为,则,所以,整理得,又,所以,两边取对数有,得:,即.故答案为:.15、【解析】先求得圆心到直线的距离,结合圆上的点到直线的距离的最大值为,即可求解.【详解】由题意,圆的圆心坐标为,半径为,则圆心到直线的距离为,所以圆上的点到直线的距离的最大值为.故答案为:16、13【解析】设等差数列公差为d,根据等差数列通项公式、前n项和公式及可求k.【详解】设等差数列公差为d,∵,∴,即,即,∴.故答案为:13.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)先求出直线的方程,联立直线与椭圆,求出A点坐标;(2)设出直线方程,联立椭圆方程,用韦达定理得到两根之和,两根之积,求出两点的纵坐标,证明出,即可证明关于轴对称.【小问1详解】由题意得,,所以直线方程为,与椭圆方程联立得解得或,当时,,所以【小问2详解】设,,的方程为,联立消去得,则,直线的方程为,设,则,直线的方程为,设,则,因为,即,所以点,关于轴对称18、(1)证明见解析(2)【解析】(1)取中点,由面面垂直和线面垂直性质可证得,结合,由线面垂直判定可证得平面,由线面垂直性质可得结论;(2)以为坐标原点可建立空间直角坐标系,由向量数乘运算可求得点坐标,利用二面角的向量求法可求得结果.【小问1详解】取中点,连接,为等边三角形,为中点,,平面平面,平面平面,平面,平面,又平面,;分别为中点,,又,,平面,,平面,又平面,.【小问2详解】以为坐标原点,为轴可建立如图所示空间直角坐标系,则,,,,,设,则,,由得:,解得:,即,,设平面的法向量,则,令,解得:,,;又平面的一个法向量,;由图象知:二面角为锐二面角,二面角的大小为.19、(1)证明见解析(2)【解析】(1)由题意可证得,所以以C为坐标原点,所在直线分别为x轴,y轴,z轴建立空间直角坐标系,利用空间向量证明,(2)求出两个平面的法向量,利用空间向量求解【小问1详解】∵平面平面,平面平面,∴平面,∴,以C为坐标原点,所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则,.设平面的法向量为,则,令,则,∵平面,∴∥平面.【小问2详解】,设平面的法向量为,则,令,则.∴.由图可知平面与平面的夹角为锐角,所以平面与平面的夹角为.20、(1)(2)【解析】(1)由条件因式分解可得,从而得到,即可得出答案.(2)由(1)可得,由错位相减法求和得到,由题意即即对恒成立,分析数列的单调性,得出答案.【小问1详解】由,得∵∴∴∴数列是公比为2的等比数列.∵,∴.【小问2详解】由(1)知,∴∴①∴②①-②得∴∴由对恒成立得对恒成立即对恒成立,又是递减数列∴时得到最大值∴,即∴的取值范围是.21、(1)(2)或【解析】(1)根据命题对应的集合是命题对应的集合的真子集列式解得结果即可得解;(2)“p或q”为真命题,“p且q”为假命题,等价于与一真一假,分两种情况列式可得结果.【详解】(1)因为p:对应的集合为,q:对应的集合为,且p是q的充分不必要条件,所以,所以,解得.(2),当时,,因为“p或q”为真命题,“p且q”为假命题,所以与一真一假,当真时,假,所以,此不等式组无解;当真时,假,所以,解得或.综上所述:实数x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论