云南省彝良县一中2026届数学高二上期末联考试题含解析_第1页
云南省彝良县一中2026届数学高二上期末联考试题含解析_第2页
云南省彝良县一中2026届数学高二上期末联考试题含解析_第3页
云南省彝良县一中2026届数学高二上期末联考试题含解析_第4页
云南省彝良县一中2026届数学高二上期末联考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省彝良县一中2026届数学高二上期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.从某个角度观察篮球(如图1),可以得到一个对称的平面图形,如图2所示,篮球的外轮形为圆O,将篮球表面的粘合线看成坐标轴和双曲线,若坐标轴和双曲线与圆O的交点将圆O的周长八等分,AB=BC=CD,则该双曲线的离心率为()A. B.C. D.2.已知是抛物线上的一个动点,是圆上的一个动点,是一个定点,则的最小值为A. B.C. D.3.已知等差数列的前项和为,,公差,.若取得最大值,则的值为()A.6或7 B.7或8C.8或9 D.9或104.已知等差数列,若,,则()A.1 B.C. D.35.已知是双曲线的左焦点,为右顶点,是双曲线上的点,轴,若,则双曲线的离心率为()A. B.C. D.6.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中偶数的个数为()A.24 B.18C.12 D.67.如图,在棱长为1的正方体中,M是的中点,则点到平面MBD的距离是()A. B.C. D.8.等比数列的前项和为,若,则()A. B.8C.1或 D.或9.已知向量与向量垂直,则实数x的值为()A.﹣1 B.1C.﹣6 D.610.已知等比数列满足,则q=()A.1 B.-1C.3 D.-311.已知直线为抛物线的准线,直线经过抛物线的焦点,与抛物线交于点,则的最小值为()A. B.C.4 D.812.平行六面体中,若,则()A. B.1C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点为,点在上,且,则______14.如图,在平行六面体中,底面是边长为1的正方形,若,且,则的长为_________15.已知双曲线:,,是其左右焦点.圆:,点为双曲线右支上的动点,点为圆上的动点,则的最小值是________.16.经过点,圆心在x轴正半轴上,半径为5的圆的方程为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)当时,求函数的极值;(2)若存在,使不等式成立,求实数的取值范围.18.(12分)已知抛物线C的顶点在坐标原点,焦点在x轴上,点在抛物线C上(1)求抛物线C的方程;(2)过抛物线C焦点F的直线l交抛物线于P,Q两点,若求直线l的方程19.(12分)某城市地铁公司为鼓励人们绿色出行,决定按照乘客经过地铁站的数量实施分段优惠政策,不超过12站的地铁票价如下表:乘坐站数票价(元)246现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过12站,且他们各自在每个站下地铁的可能性是相同的.(1)若甲、乙两人共付费6元,则甲、乙下地铁的方案共有多少种?(2)若甲、乙两人共付费8元,则甲比乙先下地铁的方案共有多少种?20.(12分)在平面直角坐标系xOy中,椭圆C:的左,右顶点分别为A、B,点F是椭圆的右焦点,,(1)求椭圆C的方程;(2)不过点A的直线l交椭圆C于M、N两点,记直线l、AM、AN的斜率分别为k、、.若,证明直线l过定点,并求出定点的坐标21.(12分)已知椭圆的右顶点为,上顶点为.离心率为,.(1)求椭圆的标准方程;(2)若,是椭圆上异于长轴端点的两点(斜率不为0),已知直线,且,垂足为,垂足为,若,且的面积是面积的5倍,求面积的最大值.22.(10分)已知抛物线C的对称轴是y轴,点在曲线C上.(1)求抛物线的标准方程;(2)过抛物线焦点的倾斜角为直线l与抛物线交于A、B两点,求线段AB的长度.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设出双曲线方程,通过做标准品和双曲线与圆O的交点将圆的周长八等分,且AB=BC=CD,推出点在双曲线上,然后求出离心率即可.【详解】设双曲线的方程为,则,因为AB=BC=CD,所以,所以,因为坐标轴和双曲线与圆O的交点将圆O的周长八等分,所以在双曲线上,代入可得,解得,所以双曲线的离心率为.故选:D2、A【解析】恰好为抛物线的焦点,等于到准线的距离,要想最小,过圆心作抛物线的准线的垂线交抛物线于点,交圆于,最小值等于圆心到准线的距离减去半径4-1=.考点:1.抛物线的定义;2.圆中的最值问题;3、B【解析】根据题意可知等差数列是,单调递减数列,其中,由此可知,据此即可求出结果.【详解】在等差数列中,所以,所以,即,又等差数列中,公差,所以等差数列是单调递减数列,所以,所以等差数列的前项和为取得最大值,则的值为7或8.故选:B.4、C【解析】利用等差数列的通项公式进行求解.【详解】设等差数列的公差为,因为,,所以,解得.故选:C.5、C【解析】根据条件可得与,进而可得,,的关系,可得解.【详解】由已知得,设点,由轴,则,代入双曲线方程可得,即,又,所以,即,整理可得,故,解得或(舍),故选:C.6、C【解析】根据题意,结合计数原理中的分步计算,以及排列组合公式,即可求解.【详解】根据题意,要使组成无重复数字的三位数为偶数,则从0,2中选一个数字为个位数,有种可能,从1,3,5中选两个数字为十位数和百位数,有种可能,故这个无重复数字的三位数为偶数的个数为.故选:C.7、A【解析】等体积法求解点到平面的距离.【详解】连接,,则,,由勾股定理得:,,取BD中点E,连接ME,由三线合一得:ME⊥BD,则,故,设到平面MBD的距离是,则,解得:,故点到平面MBD的距离是.故选:A8、C【解析】根据等比数列的前项和公式及等比数列通项公式即可求解.【详解】设等比数列的公比为,则因为,所以,即,解得或,所以或.故选:C.9、B【解析】根据数量积的坐标计算公式代入可得的值【详解】解:向量,与向量垂直,则,由数量积的坐标公式可得:,解得,故选:【点睛】本题考查空间向量的坐标运算,以及数量积的坐标公式,属于基础题10、C【解析】根据已知条件,利用等比数列的基本量列出方程,即可求得结果.【详解】因为,故可得;解得.故选:C.11、D【解析】先求抛物线的方程,再联立直线方程和抛物线方程,由弦长公式可求的最小值.【详解】因为直线为抛物线的准线,故即,故抛物线方程为:.设直线,则,,而,当且仅当等号成立,故的最小值为8,故选:D.12、D【解析】根据空间向量的运算,表示出,和已知比较可求得的值,进而求得答案.【详解】在平行六面体中,有,故由题意可知:,即,所以,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由抛物线的焦半径公式可求得的值.【详解】抛物线的准线方程为,由抛物线的焦半径公式可得,解得.故答案为:.14、【解析】因为,所以,即,故15、##【解析】利用双曲线定义,将的最小值问题转化为的最小值问题,然后结合图形可解.【详解】由题设知,,,,圆的半径由点为双曲线右支上的动点知∴∴.故答案为:16、【解析】设圆方程为,代入原点计算得到答案.【详解】设圆方程为经过点,代入圆方程则圆方程为故答案为【点睛】本题考查了圆方程的计算,设出圆方程是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)函数在上递增,在上递减,极大值为,无极小值(2)【解析】(1)求出函数的导函数,再根据导数的符号求得单调区间,再根据极值的定义即可得解;(2)若存在,使不等式成立,问题转化为,令,,利用导数求出函数的最大值即可得出答案.【小问1详解】解:当时,,则,当时,,当时,,所以函数在上递增,在上递减,所以函数的极大值为,无极小值;【小问2详解】解:若存在,使不等式成立,则,即,则问题转化为,令,,,当时,,当时,,所以函数在递增,在上递减,所以,所以.18、(1)(2)或【解析】(1)把点的坐标代入方程即可;(2)设直线方程,解联立方程组,消未知数,得到一元二次方程,再利用韦达定理和已知条件求斜率.【小问1详解】因为抛物线C的顶点在原点,焦点在x轴上,所以设抛物线方程为又因为点在抛物线C上,所以,解得,所以抛物线的方程为;【小问2详解】抛物线C的焦点为,当直线l的斜率不存在时,,不符合题意;当直线l的斜率存在时,设直线l的方程为,设直线l交抛物线的两点坐标为,,由得,,,,由抛物线得定义可知,所以,解得,即,所以直线l的方程为或19、(1)24(种)(2)21(种)【解析】(1)先根据共付费6元得一人付费2元一人付费4元,再确定人与乘坐站数,即可得结果;(2)先根据共付费8元得一人付费2元一人付费6元或两人都付费4元,再求甲比乙先下地铁的方案数.【小问1详解】由已知可得:甲、乙两人共付费6元,则甲、乙一人付费2元一人付费4元,又付费2元的乘坐站数有1,2,3三种选择,付费4元的乘坐站数有4,5,6,7四种选,所以甲、乙下地铁的方案共有(3×4)×2=24(种).【小问2详解】甲、乙两人共付费8元,则甲、乙一人付费2元一人付费6元或两人都付费4元;当甲付费2元,乙付费6元时,甲乘坐站数有1,2,3三种选择,乙乘坐站数有8,9,10,11,12五种选择,此时,共有35=15(种)方案;当两人都付费4元时,若甲在第4站下地铁,则乙可在第5,6,7站下地铁,有3种方案;若甲在第5站下地铁,则乙可在第6,7站下地铁,有2种方案;若甲在第6站下地铁,则乙可在第7站下地铁,有1种方案;综上,甲比乙先下地铁的方案共有(种).20、(1);(2)证明见解析,(-5,0).【解析】(1)写出A、B、F的坐标,求出向量坐标,根据向量的关系即可列出方程组,求得a、b、c和椭圆的标准方程;(2)设直线l的方程为y=kx+m,,.联立直线l与椭圆方程,根据韦达定理得到根与系数的关系,求出,根据即可求得k和m的关系,即可证明直线过定点并求出该定点.【小问1详解】由题意,知A(-a,0),B(a,0),F(c,0)∵,∴解得从而b2=a2-c2=3∴椭圆C的方程;【小问2详解】设直线l的方程为y=kx+m,,∵直线l不过点A,因此-2k+m≠0由得时,,,∴由,可得3k=m-2k,即m=5k,故l的方程为y=kx+5k,恒过定点(-5,0).21、(1)(2)面积的最大值为【解析】(1)由离心率为,,得,解得,,,进而可得答案(2)设直线的方程为,,,,,联立直线与椭圆的方程,结合韦达定理可得,,由弦长公式可得,点到直线的距离,则,,由的面积是面积的5倍,解得,再计算的最大值,即可【小问1详解】解:因为离心率为,,所以,解得,,,所以【小问2详解】解:设直线的方程为,,,,,联立,得,所以,,所以,点到直线的距离,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论