版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河南省遂平中学高一上数学期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.定义域为R的函数,若关于的方程恰有5个不同的实数解,则=A.0 B.C. D.12.已知定义在R上的函数,(e为自然对数的底数,),则()A.3 B.6C.3e D.与实数m的取值有关3.某几何体的三视图如图所示,它的体积为()A.72π B.48πC.30π D.24π4.若是的一个内角,且,则的值为A. B.C. D.5.已知是定义在上的奇函数,且,若对任意,都有成立,则的值为()A.2022 B.2020C.2018 D.06.某时钟的秒针端点A到中心点O的距离为5cm,秒针绕点O匀速旋转,当时间:t=0时,点A与钟面上标12的点B重合,当t∈[0,60],A,B两点间的距离为d(单位:A.5sintC.5sinπt7.函数部分图象如图所示,则下列结论错误的是()A.频率为 B.周期为C.振幅为2 D.初相为8.sin()=()A. B.C. D.9.函数的单调减区间为()A. B.C. D.10.若a=40.9,b=log415,c=80.4,则()A.b>c>a B.a>b>cC.c>a>b D.a>c>b二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则的值为___________.12.高斯是德国著名的数学家,用其名字命名的“高斯函数”为,其中表示不超过x的最大整数.例如:,.已知函数,若,则________;不等式的解集为________.13.若函数在上单调递减,则实数a的取值范围为___________.14.密位广泛用于航海和军事,我国采用“密位制”是6000密位制,即将一个圆圈分成6000等份,每一个等份是一个密位,那么600密位等于___________rad.15.若角的终边与角的终边相同,则在内与角的终边相同的角是______16.设函数的图象为,则下列结论中正确的是__________(写出所有正确结论的编号).①图象关于直线对称;②图象关于点对称;③函数在区间内是增函数;④把函数的图象上点的横坐标缩短为原来的一半(纵坐标不变)可以得到图象.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,其中,.(1)若,求函数的最大值;(2)若在上的最大值为,最小值为,试求,的值.18.已知集合.(1)当时.求;(2)若是的充分条件,求实数的取值范围.19.如图,已知点,是以为底边的等腰三角形,点在直线:上(1)求边上的高所在直线的方程;(2)求的面积20.已知圆经过,两点,且圆心在直线:上.(Ⅰ)求圆的方程;(Ⅱ)若点在直线:上,过点作圆的一条切线,为切点,求切线长的最小值;(Ⅲ)已知点为,若在直线:上存在定点(不同于点),满足对于圆上任意一点,都有为一定值,求所有满足条件点的坐标.21.设全集,,.求,,,
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】本题考查学生的推理能力、数形结合思想、函数方程思想、分类讨论等知识如图,由函数的图象可知,若关于的方程恰有5个不同的实数解,当时,方程只有一根为2;当时,方程有两不等实根(),从而方程,共有四个根,且这四个根关于直线对称分布,故其和为8.从而,,选C【点评】本题需要学生具备扎实的基本功,难度较大2、B【解析】可证,从而可得正确的选项.【详解】因为,故,故,故选:B3、C【解析】由题意,结合图象可得该几何体是圆锥和半球体的组合体,根据图中的数据即可计算出组合体的体积选出正确选项.由图知,该几何体是圆锥和半球体的组合体,球的半径是3,圆锥底面圆的半径是3,圆锥母线长为5,由圆锥的几何特征可求得圆锥的高为4,则它的体积.考点:由三视图求面积、体积4、D【解析】是的一个内角,,又,所以有,故本题的正确选项为D.考点:三角函数诱导公式的运用.5、D【解析】利用条件求出的周期,然后可得答案.【详解】因为是定义在上的奇函数,且,所以,所以,所以即的周期为4,所以故选:D6、D【解析】由题知圆心角为tπ30,过O作AB的垂线,通过计算可得d【详解】由题知,圆心角为tπ30,过O作AB的垂线,则故选:D7、A【解析】根据图象可得、,然后利用求出即可.【详解】由图可知,C正确;,则,,B正确;,A错误;因为,则,即,又,则,D正确故选:A8、A【解析】直接利用诱导公式计算得到答案.【详解】故选:【点睛】本题考查了诱导公式化简,意在考查学生对于诱导公式的应用.9、A【解析】先求得函数的定义域,利用二次函数的性质求得函数的单调区间,结合复合函数单调性的判定方法,即可求解.【详解】由不等式,即,解得,即函数的定义域为,令,可得其图象开口向下,对称轴的方程为,当时,函数单调递增,又由函数在定义域上为单调递减函数,结合复合函数的单调性的判定方法,可得函数的单调减区间为.故选:A.10、D【解析】把化为以为底的指数和对数,利用中间值“”以及指数函数的单调性即可比较大小.【详解】,,,又因为为增函数,所以,即综上可得,a>c>b故选:D【点睛】本题考查了利用中间值以及函数的单调性比较数的大小,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用和角正弦公式、差角余弦公式及同角商数关系,将目标式化为即可求值.【详解】.故答案为:.12、①.②.【解析】第一空:”根据“高斯函数”的定义,可得,进而再分类讨论建立方程求值即可;第二空:分类讨论建立不等式求解即可.【详解】由题意,得,当时,,即;当时,,即(舍),综上;当时,,即,当时,,即,综上,.故答案为:;.【点睛】关键点睛:求解分段函数相关问题的关键是“分段归类”,即应用分类讨论思想.13、【解析】利用复合函数的单调性,即可得到答案;【详解】在定义域内始终单调递减,原函数要单调递减时,,,,故答案为:14、【解析】根据周角为,结合新定义计算即可【详解】解:∵圆周角为,∴1密位,∴600密位,故答案为:15、【解析】根据角的终边与角的终边相同,得到,再得到,然后由列式,根据,可得整数的值,从而可得.【详解】∵(),∴()依题意,得(),解得(),∴,∴在内与角的终边相同的角为故答案为【点睛】本题考查了终边相同的角的表示,属于基础题.16、①③【解析】图象关于直线对称;所以①对;图象关于点对称;所以②错;,所以函数在区间内是增函数;所以③对;因为把函数的图象上点的横坐标缩短为原来的一半(纵坐标不变)可以得到,所以④错;填①③.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2),.【解析】(1)根据条件得对称轴范围,与定义区间位置关系比较得最大值(2)由得对称轴必在内,即得,且,解方程组可得,的值.试题解析:解:抛物线的对称轴为,(1)若,即则函数在为增函数,(2)①当时,即时,当时,,,,,解得或(舍),,.②当时,即时,在上为增函数,与矛盾,无解,综上得:,.18、(1)或.(2)【解析】(1)解一元二次不等式求集合A、B,再由集合的补、并运算求即可.(2)由充分条件知,则有,进而求的取值范围.【小问1详解】,当时,,或,∴或;【小问2详解】由是的充分条件,知:,∴,解得,∴的取值范围为.19、解:(Ⅰ)x-y-1=0;(Ⅱ)2【解析】(1)由题意,求得直线的斜率,从而得到,利用直线的点斜式方程,即可求解直线的方程;(2)由,求得,利用两点间的距离公式和三角形的面积公式,即可求得三角形的面积.试题解析:(Ⅰ)由题意可知,为的中点,∴,且,∴所在直线方程为,即.(Ⅱ)由得∴∴,∴∴20、(Ⅰ);(Ⅱ);(Ⅲ).【解析】分析】(Ⅰ)根据题意,设出圆的标准方程,代入条件,列方程求解即可;(Ⅱ)由勾股定理得,所以要求的最小值,即求的最小值,而最小时,垂直于直线,据此可得结论;(Ⅲ)设,,列出相应等式化简,再利用点的任意性,列出方程组求解即可.【详解】(Ⅰ)设圆的方程为,根据题意有,解得,所以圆的方程为;(Ⅱ)由勾股定理得,即,所以要求的最小值,即求的最小值,而当垂直于直线时,最小,此时,所以的最小值为;(Ⅲ)设,满足,假设的定值为,则,化简得,因为对于圆上任意一点上式都成立,所以,解得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 固体饮料喷雾造粒工岗前实操知识水平考核试卷含答案
- 种畜胚胎移植工岗前设备维护考核试卷含答案
- 水声测量工成果考核试卷含答案
- 医患关系非语言沟通技巧
- 国内医患关系对策研究
- 2026年上半年曲靖师范学院招聘硕士及以上工作人员备考题库(12人)及1套参考答案详解
- 金友产品智能化2015.12.18
- 企业合同管理制度
- 2025北京市大兴区卫生健康委员会面向应届毕业生招聘工作人员65人备考题库及一套答案详解
- 老年术后急症非典型症状处理教学
- 《低碳医院评价指南》(T-SHWSHQ 14-2025)
- 马的文化介绍
- 四川省石室中学2025-2026学年高一上数学期末教学质量检测试题含解析
- 二年级数学计算题专项练习1000题汇编集锦
- AI技术在人力资源管理中的实际应用案例分享
- 急诊预检分诊课件教学
- (完整版)小学一年级20以内加减法混合运算3000题(每页100题-已排版)
- GB/T 46509-2025玩具中挥发性有机化合物释放量的测定
- 2026届浙江省杭州城区6学校数学七年级第一学期期末教学质量检测试题含解析
- 2025年中国菜板市场调查研究报告
- 《杭州市建设工程消防验收技术导则》
评论
0/150
提交评论