版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届南京市重点中学数学高一上期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,最小正周期为π2A.y=cosxC.y=cos2x2.已知为钝角,且,则()A. B.C. D.3.化简=A.sin2+cos2 B.sin2-cos2C.cos2-sin2 D.±(cos2-sin2)4.方程的根所在的区间为A. B.C. D.5.为了鼓励大家节约用水,遵义市实行了阶梯水价制度,下表是年遵义市每户的综合用水单价与户年用水量的关系表.假设居住在遵义市的艾世宗一家年共缴纳的水费为元,则艾世宗一家年共用水()分档户年用水量综合用水单价/(元)第一阶梯(含)第二阶梯(含)第三阶梯以上A. B.C. D.6.为参加学校运动会,某班要从甲,乙,丙,丁四位女同学中随机选出两位同学担任护旗手,那么甲同学被选中的概率是()A. B.C. D.7.设,则a,b,c的大小关系是()A. B.C. D.8.设集合,,则集合与集合的关系是()A. B.C. D.9.下列函数既是奇函数,又是在区间上是增函数是A. B.C. D.10.设全集,,,则图中阴影部分表示的集合为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数fx=-x+3,x≤2,logax,x>2(a>0且a≠1).①若a=12,则f12.对于定义在上的函数,如果存在区间,同时满足下列两个条件:①在区间上是单调递增的;②当时,函数的值域也是,则称是函数的一个“递增黄金区间”.下列函数中存在“递增黄金区间”的是:___________.(填写正确函数的序号)①;②;③;④.13.如图,、、、分别是三棱柱的顶点或所在棱的中点,则表示直线与是异面直线的图形有______.14.在中,已知是x的方程的两个实根,则________15.已知函数,则的值是()A. B. C. D.16.定义:如果函数在定义域内给定区间上存在,满足,则称函数是上的“平均值函数”,是它的一个均值点.若函数是上的平均值函数,则实数的取值范围是____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.求函数的定义域,并指出它的单调性及单调区间18.已知集合A为函数的定义域,集合B是不等式的解集(1)时,求;(2)若,求实数a的取值范围19.已知二次函数满足对任意,都有;;的图象与轴的两个交点之间的距离为.(1)求的解析式;(2)记,(i)若为单调函数,求的取值范围;(ii)记的最小值为,若方程有两个不等的根,求的取值范围.20.已知角α的终边经过点P.(1)求sinα的值;(2)求的值.21.已知函数(1)求的最小正周期;(2)求的单调递增区间
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用三角函数的周期性求解.【详解】A.y=cosx周期为T=2πB.y=tanx的周期为C.y=cos2x的周期为D.y=tan2x的周期为故选:D2、C【解析】先求出,再利用和角的余弦公式计算求解.【详解】∵为钝角,且,∴,∴故选:C【点睛】本题主要考查同角的平方关系,考查和角的余弦公式的应用,意在考查学生对这些知识的理解掌握水平.3、A【解析】利用诱导公式化简根式内的式子,再根据同角三角函数关系式及大小关系,即可化简【详解】根据诱导公式,化简得又因为所以选A【点睛】本题考查了三角函数式的化简,关键注意符号,属于中档题4、C【解析】令函数,则方程的根即为函数的零点再根据函数零点的判定定理可得函数零点所在区间【详解】令函数,则方程的根即为函数的零点,再由,且,可得函数在上有零点故选C【点睛】本题主要考查函数的零点的判定定理的应用,属于基础题5、B【解析】设户年用水量为,年缴纳税费为元,根据题意求出的解析式,再利用分段函数的解析式可求出结果.【详解】设户年用水量为,年缴纳的税费为元,则,即,当时,,当时,,当时,,所以,解得,所以艾世宗一家年共用水.故选:B6、C【解析】求出从甲、乙、丙、丁4位女同学中随机选出2位同学担任护旗手的基本事件,甲被选中的基本事件,即可求出甲被选中的概率【详解】解:从甲、乙、丙、丁4位同学中随机选出2位担任护旗手,共有种方法,甲被选中,共有3种方法,甲被选中的概率是故选:C【点睛】本题考查通过组合的应用求基本事件和古典概型求概率,考查学生的计算能力,比较基础7、C【解析】比较a、b、c与0和1的大小即可判断它们之间的大小.【详解】,,,故故选:C.8、D【解析】化简集合、,进而可判断这两个集合的包含关系.【详解】因为,,因此,.故选:D.9、A【解析】对于,函数,定义域是,有,且在区间是增函数,故正确;对于,函数的定义域是,是非奇非偶函数,故错误;对于,函数的定义域是,有,在区间不是增函数,故错误;对于,函数的定义域是,有,是偶函数不是奇函数,故错误故选A10、B【解析】,阴影部分表示的集合为,选B.二、填空题:本大题共6小题,每小题5分,共30分。11、①.-2②.1<a≤2【解析】先计算f-1的值,再计算ff-1【详解】当a=12时,所以f-1所以ff当x≤2时,fx当x=2时,fx=-x+3取得最小值当0<a<1时,且x>2时,f(x)=log此时函数无最小值.当a>1时,且x>2时,f(x)=log要使函数有最小值,则必须满足loga2≥1,解得故答案为:-2;1<a≤2.12、②③【解析】由条件可得方程有两个实数解,然后逐一判断即可.【详解】∵在上单调递增,由条件②可知,即方程有两个实数解;∵x+1=x无实数解,∴①不存在“递增黄金区间”;∵的两根为:1和2,不难验证区间[1,2]是函数的一个“递增黄金区间”;在同一坐标系中画出与的图象如下:由图可得方程有两个根,∴③也存在“递增黄金区间”;在同一坐标系中画出与的图象如下:所以没有实根,∴④不存在.故答案为:②③.13、②④【解析】图①中,直线,图②中面,图③中,图④中,面【详解】解:根据题意,在①中,且,则四边形是平行四边形,有,不是异面直线;图②中,、、三点共面,但面,因此直线与异面;在③中,、分别是所在棱的中点,所以且,故,必相交,不是异面直线;图④中,、、共面,但面,与异面所以图②④中与异面故答案为:②④.14、##【解析】根据根与系数关系可得,,再由三角形内角和的性质及和角正切公式求,即可得其大小.【详解】由题设,,,又,且,∴.故答案为:.15、B【解析】分段函数求值,根据自变量所在区间代相应的对应关系即可求解【详解】函数那么可知,故选:B16、##,##【解析】根据题意,方程,即在内有实数根,若函数在内有零点.首先满足,解得,或.对称轴为.对分类讨论即可得出【详解】解:根据题意,若函数是,上的平均值函数,则方程,即在内有实数根,若函数在内有零点则,解得,或(1),.对称轴:①时,,,(1),因此此时函数在内一定有零点.满足条件②时,,由于(1),因此函数在内不可能有零点,舍去综上可得:实数的取值范围是,故答案为:,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、答案见解析【解析】由题,解不等式得定义域,再根据,利用整体代换法求解函数的单调递减区间即可.【详解】解:要使函数有意义,应满足,解得∴函数定义域为.∵,∴,解得,∴函数的单调递减区间为.18、(1)(2)【解析】(1)由函数定义域求A,由不等式求B,按照集合交并补运算规则即可;(2)由A推出B的范围,由于a的不确定性,可以将不等式转换,用基本不等式解决.【小问1详解】由,解得:,即;当时,由得:或,∴,∴,∴;【小问2详解】由知:,即对任意,恒成立,∴,∵,当且仅当,即时取等号,∴,即实数a的取值范围为;综上:,.19、(1);(2)(i);(ii)或.【解析】(1)根据二次函数的对称轴、求参数a、b、c,写出的解析式;(2)(i)利用二次函数的性质,结合的区间单调性求的取值范围;(ii)讨论、、,结合二次函数的性质求最小值的表达式,再令并应用数形结合的方法研究的零点情况求的取值范围.【详解】(1)设由题意知:对称轴,,又,则,,设的两根为,,则,,由已知:,解得.(2)(i),其对称轴为为单调函数,或,解得或.的取值范围是.(ii),,对称轴①当,即时,区间单调递增,.②当,即时,在区间单调递减,③当,即时,,函数零点即为方程的根令,即,作出的简图如图所示①当时,,或,解得或,有个零点;②当时,有唯一解,解得,有个零点;③当时,有两个不同解,,解得或,有4个零点;④当时,,,解得,有个零点;⑤当时,无解,无零点综上:当或时,有个零点.【点睛】关键点点睛:第二问,(i)分类讨论并结合二次函数区间单调性求参数范围,(ii)分类讨论求最小值的表达式,再应用换元法及数形结合求参数范围
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- CCAA - 2023年01月环境管理体系基础答案及解析 - 详解版(65题)
- 养老院老人临终关怀服务制度
- 企业员工培训与素质拓展制度
- 老年终末期患者跌倒预防环境改造的循证实践培训方案
- 保障智能助手用户数据的安全政策
- 2025年内蒙古通辽经济技术开发区社区工作者招聘笔试真题
- 2025年山西省烟草专卖局(公司)真题
- 2025年龙岩市中医院招聘专业技术考试真题
- 2025年福建省能源石化集团有限责任公司招聘考试真题
- 线性代数02198自考真题模拟试题及答案
- 大体积混凝土施工裂缝防治技术研究
- 电力行业物资管理部岗位职责
- 感染性心内膜炎护理查房
- 导管相关皮肤损伤患者的护理 2
- 审计数据管理办法
- 建筑设计防火规范-实施指南
- 口腔修复临床病例
- 乙状结肠冗长护理查房
- 2025年广西中考英语试卷真题(含答案解析)+听力音频
- 短文鲁迅阅读题目及答案
- DB34T 5137-2025电化学储能液冷系统设计技术要求
评论
0/150
提交评论