版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
济南市历城第四中学2026届数学高三第一学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是()A.月收入的极差为60 B.7月份的利润最大C.这12个月利润的中位数与众数均为30 D.这一年的总利润超过400万元2.设为的两个零点,且的最小值为1,则()A. B. C. D.3.已知数列an满足:an=2,n≤5a1A.16 B.17 C.18 D.194.我们熟悉的卡通形象“哆啦A梦”的长宽比为.在东方文化中通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是()A.400米 B.480米C.520米 D.600米5.已知函数.设,若对任意不相等的正数,,恒有,则实数a的取值范围是()A. B.C. D.6.木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积()A. B. C. D.7.若非零实数、满足,则下列式子一定正确的是()A. B.C. D.8.近年来,随着网络的普及和智能手机的更新换代,各种方便的相继出世,其功能也是五花八门.某大学为了调查在校大学生使用的主要用途,随机抽取了名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:①可以估计使用主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;②可以估计不足的大学生使用主要玩游戏;③可以估计使用主要找人聊天的大学生超过总数的.其中正确的个数为()A. B. C. D.9.如图,在平行四边形中,为对角线的交点,点为平行四边形外一点,且,,则()A. B.C. D.10.某地区教育主管部门为了对该地区模拟考试成进行分析,随机抽取了200分到450分之间的2000名学生的成绩,并根据这2000名学生的成绩画出样本的频率分布直方图,如图所示,则成绩在,内的学生人数为()A.800 B.1000 C.1200 D.160011.已知整数满足,记点的坐标为,则点满足的概率为()A. B. C. D.12.为计算,设计了如图所示的程序框图,则空白框中应填入()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图所示,在△ABC中,AB=AC=2,,,AE的延长线交BC边于点F,若,则____.14.某学习小组有名男生和名女生.若从中随机选出名同学代表该小组参加知识竞赛,则选出的名同学中恰好名男生名女生的概率为___________.15.已知数列满足,则________.16.展开式中的系数为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设直线与抛物线交于两点,与椭圆交于两点,设直线(为坐标原点)的斜率分别为,若.(1)证明:直线过定点,并求出该定点的坐标;(2)是否存在常数,满足?并说明理由.18.(12分)已知抛物线的焦点为,点在抛物线上,,直线过点,且与抛物线交于,两点.(1)求抛物线的方程及点的坐标;(2)求的最大值.19.(12分)已知f(x)=|x+3|-|x-2|(1)求函数f(x)的最大值m;(2)正数a,b,c满足a+2b+3c=m,求证:20.(12分)已知是各项都为正数的数列,其前项和为,且为与的等差中项.(1)求证:数列为等差数列;(2)设,求的前100项和.21.(12分)已知函数,且.(1)求的解析式;(2)已知,若对任意的,总存在,使得成立,求的取值范围.22.(10分)对于给定的正整数k,若各项均不为0的数列满足:对任意正整数总成立,则称数列是“数列”.(1)证明:等比数列是“数列”;(2)若数列既是“数列”又是“数列”,证明:数列是等比数列.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
直接根据折线图依次判断每个选项得到答案.【详解】由图可知月收入的极差为,故选项A正确;1至12月份的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,7月份的利润最高,故选项B正确;易求得总利润为380万元,众数为30,中位数为30,故选项C正确,选项D错误.故选:.【点睛】本题考查了折线图,意在考查学生的理解能力和应用能力.2、A【解析】
先化简已知得,再根据题意得出f(x)的最小值正周期T为1×2,再求出ω的值.【详解】由题得,设x1,x2为f(x)=2sin(ωx﹣)(ω>0)的两个零点,且的最小值为1,∴=1,解得T=2;∴=2,解得ω=π.故选A.【点睛】本题考查了三角恒等变换和三角函数的图象与性质的应用问题,是基础题.3、B【解析】
由题意可得a1=a2=a3=a4=a5=2,累加法求得a62+【详解】解:an即a1=an⩾6时,a1a1两式相除可得1+a则an2=由a6a7…,ak2=可得aa1且a1正整数k(k⩾5)时,要使得a1则ak+1则k=17,故选:B.【点睛】本题考查与递推数列相关的方程的整数解的求法,注意将题设中的递推关系变形得到新的递推关系,从而可简化与数列相关的方程,本题属于难题.4、B【解析】
根据题意,画出几何关系,结合各线段比例可先求得第一展望台和第二展望台的距离,进而由比例即可求得该塔的实际高度.【详解】设第一展望台到塔底的高度为米,塔的实际高度为米,几何关系如下图所示:由题意可得,解得;且满足,故解得塔高米,即塔高约为480米.故选:B【点睛】本题考查了对中国文化的理解与简单应用,属于基础题.5、D【解析】
求解的导函数,研究其单调性,对任意不相等的正数,构造新函数,讨论其单调性即可求解.【详解】的定义域为,,当时,,故在单调递减;不妨设,而,知在单调递减,从而对任意、,恒有,即,,,令,则,原不等式等价于在单调递减,即,从而,因为,所以实数a的取值范围是故选:D.【点睛】此题考查含参函数研究单调性问题,根据参数范围化简后构造新函数转换为含参恒成立问题,属于一般性题目.6、C【解析】
由三视图知几何体是一个从圆锥中截出来的锥体,圆锥底面半径为,圆锥的高,截去的底面劣弧的圆心角为,底面剩余部分的面积为,利用锥体的体积公式即可求得.【详解】由已知中的三视图知圆锥底面半径为,圆锥的高,圆锥母线,截去的底面弧的圆心角为120°,底面剩余部分的面积为,故几何体的体积为:.故选C.【点睛】本题考查了三视图还原几何体及体积求解问题,考查了学生空间想象,数学运算能力,难度一般.7、C【解析】
令,则,,将指数式化成对数式得、后,然后取绝对值作差比较可得.【详解】令,则,,,,,因此,.故选:C.【点睛】本题考查了利用作差法比较大小,同时也考查了指数式与对数式的转化,考查推理能力,属于中等题.8、C【解析】
根据利用主要听音乐的人数和使用主要看社区、新闻、资讯的人数作大小比较,可判断①的正误;计算使用主要玩游戏的大学生所占的比例,可判断②的正误;计算使用主要找人聊天的大学生所占的比例,可判断③的正误.综合得出结论.【详解】使用主要听音乐的人数为,使用主要看社区、新闻、资讯的人数为,所以①正确;使用主要玩游戏的人数为,而调查的总人数为,,故超过的大学生使用主要玩游戏,所以②错误;使用主要找人聊天的大学生人数为,因为,所以③正确.故选:C.【点睛】本题考查统计中相关命题真假的判断,计算出相应的频数与频率是关键,考查数据处理能力,属于基础题.9、D【解析】
连接,根据题目,证明出四边形为平行四边形,然后,利用向量的线性运算即可求出答案【详解】连接,由,知,四边形为平行四边形,可得四边形为平行四边形,所以.【点睛】本题考查向量的线性运算问题,属于基础题10、B【解析】
由图可列方程算得a,然后求出成绩在内的频率,最后根据频数=总数×频率可以求得成绩在内的学生人数.【详解】由频率和为1,得,解得,所以成绩在内的频率,所以成绩在内的学生人数.故选:B【点睛】本题主要考查频率直方图的应用,属基础题.11、D【解析】
列出所有圆内的整数点共有37个,满足条件的有7个,相除得到概率.【详解】因为是整数,所以所有满足条件的点是位于圆(含边界)内的整数点,满足条件的整数点有共37个,满足的整数点有7个,则所求概率为.故选:.【点睛】本题考查了古典概率的计算,意在考查学生的应用能力.12、A【解析】
根据程序框图输出的S的值即可得到空白框中应填入的内容.【详解】由程序框图的运行,可得:S=0,i=0满足判断框内的条件,执行循环体,a=1,S=1,i=1满足判断框内的条件,执行循环体,a=2×(﹣2),S=1+2×(﹣2),i=2满足判断框内的条件,执行循环体,a=3×(﹣2)2,S=1+2×(﹣2)+3×(﹣2)2,i=3…观察规律可知:满足判断框内的条件,执行循环体,a=99×(﹣2)99,S=1+2×(﹣2)+3×(﹣2)2+…+1×(﹣2)99,i=1,此时,应该不满足判断框内的条件,退出循环,输出S的值,所以判断框中的条件应是i<1.故选:A.【点睛】本题考查了当型循环结构,当型循环是先判断后执行,满足条件执行循环,不满足条件时算法结束,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
过点做,可得,,由可得,可得,代入可得答案.【详解】解:如图,过点做,易得:,,,故,可得:,同理:,,可得,,由,可得,可得:,可得:,,故答案为:.【点睛】本题主要考查平面向量的线性运算和平面向量的数量积,由题意作出是解题的关键.14、【解析】
从7人中选出2人则总数有,符合条件数有,后者除以前者即得结果【详解】从7人中随机选出2人的总数有,则记选出的名同学中恰好名男生名女生的概率为事件,∴故答案为:【点睛】组合数与概率的基本运用,熟悉组合数公式15、【解析】
项和转化可得,讨论是否满足,分段表示即得解【详解】当时,由已知,可得,∵,①故,②由①-②得,∴.显然当时不满足上式,∴故答案为:【点睛】本题考查了利用求,考查了学生综合分析,转化划归,数学运算,分类讨论的能力,属于中档题.16、【解析】
变换,根据二项式定理计算得到答案.【详解】的展开式的通项为:,,取和,计算得到系数为:.故答案为:.【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(0,2);(2)存在,理由见解析【解析】
(1)设直线l的方程为y=kx+b代入抛物线的方程,利用OA⊥OB,求出b,即可知直线过定点(2)由斜率公式分别求出,,联立直线与抛物线,椭圆,再由根与系数的关系得,,,代入,,化简即可求解.【详解】(1)证明:由题知,直线l的斜率存在且不过原点,故设由可得,.,,故所以直线l的方程为故直线l恒过定点.(2)由(1)知设由可得,,即存在常数满足题意.【点睛】本题主要考查了直线与抛物线、椭圆的位置关系,直线过定点问题,考查学生分析解决问题的能力,属于中档题.18、(1),;(2)1.【解析】
(1)根据抛物线上的点到焦点和准线的距离相等,可得p值,即可求抛物线C的方程从而可得解;(2)设直线l的方程为:x+my﹣1=0,代入y2=4x,得,y2+4my﹣4=0,设A(x1,y1),B(x2,y2),则y1+y2=﹣4m,y1y2=﹣4,x1+x2=2+4m2,x1x2=1,(),(x2﹣2,),由此能求出的最大值.【详解】(1)∵点F是抛物线y2=2px(p>0)的焦点,P(2,y0)是抛物线上一点,|PF|=3,∴23,解得:p=2,∴抛物线C的方程为y2=4x,∵点P(2,n)(n>0)在抛物线C上,∴n2=4×2=8,由n>0,得n=2,∴P(2,2).(2)∵F(1,0),∴设直线l的方程为:x+my﹣1=0,代入y2=4x,整理得,y2+4my﹣4=0设A(x1,y1),B(x2,y2),则y1,y2是y2+4my﹣4=0的两个不同实根,∴y1+y2=﹣4m,y1y2=﹣4,x1+x2=(1﹣my1)+(1﹣my2)=2﹣m(y1+y2)=2+4m2,x1x2=(1﹣my1)(1﹣my2)=1﹣m(y1+y2)+m2y1y2=1+4m2﹣4m2=1,(),(x2﹣2,),(x1﹣2)(x2﹣2)+()()=x1x2﹣2(x1+x2)+4=1﹣4﹣8m2+4﹣4+8m+8=﹣8m2+8m+5=﹣8(m)2+1.∴当m时,取最大值1.【点睛】本题考查抛物线方程的求法,考查向量的数量积的最大值的求法,考查抛物线、直线方程、韦达定理等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.19、(1)(2)见解析【解析】
(1)利用绝对值三角不等式求得的最大值.(2)由(1)得.方法一,利用柯西不等式证得不等式成立;方法二,利用“的代换”的方法,结合基本不等式证得不等式成立.【详解】(1)由绝对值不等式性质得当且仅当即时等号成立,所以(2)由(1)得.法1:由柯西不等式得当且仅当时等号成立,即,所以.法2:由得,,当且仅当时“=”成立.【点睛】本小题主要考查绝对值三角不等式,考查利用柯西不等式、基本不等式证明不等式,属于中档题.20、(1)证明见解析;(2).【解析】
(1)利用已知条件化简出,当时,,当时,再利用进行化简,得出,即可证明出为等差数列;(2)根据(1)中,求出数列的通项公式,再化简出,可直接求出的前100项
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保卫管理员岗前成果转化考核试卷含答案
- 飞机雷达调试工岗前客户关系管理考核试卷含答案
- 玻璃制品冷加工工岗前跨界整合考核试卷含答案
- 老年痴呆症筛查指南的伦理更新
- 老年疼痛患者膝骨关节炎方案
- 公司员工合同模板及范例
- 餐饮行业新模式探讨
- 老年智能健康监测中的失能预防伦理策略
- 人体胚胎发育:定价策略课件
- 2026年及未来5年市场数据中国离岛免税行业市场深度分析及投资策略研究报告
- 继承农村房屋协议书
- (新教材)2025年人教版八年级上册历史期末复习全册知识点梳理
- 2025-2026学人教版八年级英语上册(全册)教案设计(附教材目录)
- 铝方通吊顶施工技术措施方案
- 湖南公务员考试申论试题(行政执法卷)1
- 欠款过户车辆协议书
- 2025年江西省高职单招文化统考(语文)
- 《血管内超声指导冠脉介入诊疗技术规范》
- 2025版中国药典一部凡例深度解读
- 【语文】浙江省杭州市天长小学小学五年级上册期末试卷(含答案)
- 体检的必要性
评论
0/150
提交评论