版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆西南大学附属中学2026届数学高二上期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在的图象大致为()A. B.C D.2.已知双曲线的焦距为,且双曲线的一条渐近线与直线平行,则双曲线的方程为()A. B.C. D.3.已知F1、F2是双曲线E:(a>0,b>0)的左、右焦点,过F1的直线与双曲线左、右两支分别交于点P、Q.若,M为PQ的中点,且,则双曲线的离心率为()A. B.C. D.4.已知椭圆的上下顶点分别为,一束光线从椭圆左焦点射出,经过反射后与椭圆交于点,则直线的斜率为()A. B.C. D.5.的展开式中,常数项为()A. B.C. D.6.已知m,n表示两条不同的直线,表示平面,则下列说法正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则7.若直线a,b是异面直线,点O是空间中不在直线a,b上的任意一点,则()A.不存在过点O且与直线a,b都相交的直线B.过点O一定可以作一条直线与直线a,b都相交C.过点O可以作无数多条直线与直线a,b都相交D.过点O至多可以作一条直线与直线a,b都相交8.等差数列中,,,则()A.1 B.2C.3 D.49.和的等差中项与等比中项分别为()A., B.2,C., D.1,10.以下说法:①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;②设有一个回归方程,变量增加1个单位时,平均增加5个单位③线性回归方程必过④设具有相关关系的两个变量的相关系数为,那么越接近于0,之间的线性相关程度越高;⑤在一个列联表中,由计算得的值,那么的值越大,判断两个变量间有关联的把握就越大。其中错误的个数是()A.0 B.1C.2 D.311.直线与圆的位置关系是()A.相交 B.相切C.相离 D.相交或相切12.执行如图所示的程序框图,输出的值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数在(0,+∞)内有且只有一个零点,则a的值为_____14.已知圆的半径为3,,为该圆的两条切线,为切点,则的最小值为___________.15.已知数列满足,,若为等差数列,则___________,若,则数列的前项和为___________.16.抛物线的准线方程为_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,且过点.(1)求椭圆的方程;(2)若,分别为椭圆的上,下顶点,过点且斜率为的直线交椭圆于另一点(异于椭圆的右顶点),交轴于点,直线与直线相交于点.求证:直线的斜率为定值.18.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,P(5,a)为抛物线C上一点,且|PF|=8(1)求抛物线C的方程;(2)过点F的直线l与抛物线C交于A,B两点,以线段AB为直径的圆过Q(0,﹣3),求直线l的方程19.(12分)已知等差数列满足:,,数列的前n项和为(1)求及;(2)设是首项为1,公比为3的等比数列,求数列的前项和20.(12分)已知,以点为圆心圆被轴截得的弦长为.(1)求圆的方程;(2)若过点的直线与圆相切,求直线的方程.21.(12分)已知正项等比数列的前项和为,满足,.记.(1)求数列的通项公式;(2)设数列前项和,求使得不等式成立的的最小值.22.(10分)已知为坐标原点,椭圆:的左、右焦点分别为,,右顶点为,上顶点为,若,,成等比数列,椭圆上的点到焦点的距离的最大值为求椭圆的标准方程;过该椭圆的右焦点作两条互相垂直的弦与,求的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】函数|在[–2,2]上是偶函数,其图象关于轴对称,因为,所以排除选项;当时,有一零点,设为,当时,为减函数,当时,为增函数故选:D.2、B【解析】根据焦点在x轴上的双曲线渐近线斜率为±可求a,b关系,再结合a,b,c关系即可求解﹒【详解】∵双曲线1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0平行,∴,∴b=2a,∵c2=a2+b2,∴a=1,b=2,∴双曲线的方程为故选:B3、D【解析】由题干条件得到,设出,利用双曲线定义表达出其他边长,得到方程,求出,从而得到,,利用勾股定理求出的关系,求出离心率.【详解】因为M为PQ的中点,且,所以△为等腰三角形,即,因为,设,则,由双曲线定义可知:,所以,则,又,所以,解得:,由勾股定理得:,其中,在三角形中,由勾股定理得:,即,解得:故选:D4、B【解析】根据给定条件借助椭圆的光学性质求出直线AD的方程,进而求出点D的坐标计算作答.【详解】依题意,椭圆的上顶点,下顶点,左焦点,右焦点,由椭圆的光学性质知,反射光线AD必过右焦点,于是得直线AD的方程为:,由得点,则有,所以直线的斜率为.故选:B5、A【解析】写出展开式通项,令的指数为零,求出参数的值,代入通项计算即可得解.【详解】的展开式通项为,令,可得,因此,展开式中常数项为.故选:A.6、D【解析】根据空间直线与平面间的位置关系判断【详解】若,,也可以有,A错;若,,也可以有,B错;若,,则或,C错;若,,则,这是线面垂直的判定定理之一,D正确故选:D7、D【解析】设直线与点确定平面,由题意可得直线与平面相交或平行.分两种情形,画图说明即可.【详解】点是空间中不在直线,上的任意一点,设直线与点确定平面,由题意可得,故直线与平面相交或平行.(1)若直线与平面相交(如图1),记,①若,则不存在过点且与直线,都相交的直线;②若与不平行,则直线即为过点且与直线,都相交的直线.(2)若直线与平面平行(如图2),则不存在过点且与直线,都相交的直线.综上所述,过点至多有一条直线与直线,都相交.故选:D.8、B【解析】根据给定条件利用等差数列性质直接计算作答.【详解】在等差数列中,因,,而,于是得,解得,所以.故选:B9、C【解析】根据等差中项和等比中项的概念分别求值即可.【详解】和的等差中项为,和的等比中项为.故选:C.10、C【详解】方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差不变,故①正确;一个回归方程,变量增加1个单位时,平均减少5个单位,故②不正确;线性回归方程必过样本中心点,故③正确;根据线性回归分析中相关系数的定义:在线性回归分析中,相关系数为r,越接近于1,相关程度越大,故④不正确;对于观察值来说,越大,“x与y有关系”的可信程度越大,故⑤正确.故选:C【点睛】本题主要考查用样本估计总体、线性回归方程、独立性检验的基本思想.11、A【解析】由直线恒过定点,且定点圆内,从而即可判断直线与圆相交.【详解】解:因为直线恒过定点,而,所以定点在圆内,所以直线与圆相交,故选:A.12、B【解析】根据程序框图的循环逻辑写出其执行步骤,即可确定输出结果.【详解】由程序框图的逻辑,执行步骤如下:1、:执行循环,,;2、:执行循环,,;3、:执行循环,,;4、:执行循环,,;5、:执行循环,,;6、:不成立,跳出循环.∴输出的值为.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、a=3【解析】对函数进行求导,分类讨论函数单调性,根据单调性结合已知可以求出a的值.【详解】∵函数在(0,+∞)内有且只有一个零点,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①当a≤0时,f′(x)=2x(3x﹣a)>0,函数f(x)在(0,+∞)上单调递增,f(0)=1,f(x)在(0,+∞)上没有零点,舍去;②当a>0时,f′(x)=2x(3x﹣a)>0的解为x,∴f(x)在(0,)上递减,在(,+∞)递增,又f(x)只有一个零点,∴f()1=0,解得a=3故答案为:a=3【点睛】本题考查了利用导数研究已知函数的零点求参数取值问题,考查了分类讨论和数学运算能力.14、【解析】设(),,则,,,根据数量积的定义和余弦的二倍角公式结合基本不等式即可求解详解】如图所示,设(),,则,,,,当且仅当即时等号成立,∴的最小值是.故答案为:15、①.##②.【解析】利用递推关系式,结合等差数列通项公式可求得公差,进而得到;利用递推关系式可知数列的奇数项和偶数项分别成等差数列,采用裂项相消的方法可求得前项和.【详解】由得:,解得:;为等差数列,设其公差为,则,解得:,;由知:数列的奇数项是以为首项,为公差的等差数列;偶数项是以为首项,为公差的等差数列;,又,,数列的前项和,.故答案为:;.【点睛】关键点点睛:本题考查根据数列递推关系求解数列中的项、裂项相消法求和的问题;解题关键是能够根据递推关系式得到数列的奇数项和偶数项分别成等差数列,由此可通过裂项相消的方法求得所求数列的和.16、【解析】本题利用抛物线的标准方程得出抛物线的准线方程【详解】由抛物线方程可知,抛物线的准线方程为:故答案为【点睛】本题考查抛物线的相关性质,主要考查抛物线的简单性质的应用,考查抛物线的准线的确定,是基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)根据条件求出,即可写出椭圆方程;(2)设直线的方程为,联立直线与椭圆,可表示出坐标,继而得出直线的方程,令可得的坐标,即可求出直线的斜率并得出定值.【详解】(1)设椭圆的焦距为,则①,②,又③,由①②③解得,,,所以椭圆的标准方程为.(2)证明:易得,,直线的方程为,因为直线不过点,所以,由,得,所以,从而,,直线的斜率为,故直线的方程为.令,得,直线斜率.所以直线的斜率为定值.【点睛】本题考查椭圆的方程的求法,考查椭圆中的定值问题,属于中档题.18、(1);(2)2x﹣y﹣6=0﹒【解析】(1)根据抛物线焦半径公式构造方程求得,从而得到结果(2)设直线,代入抛物线方程可得韦达定理的形式,根据可构造方程求得,从而得到直线方程【小问1详解】由抛物线定义可知:,解得:,抛物线的方程为:【小问2详解】由抛物线方程知:,设直线,,,,,联立方程,得:,,,以线段为直径的圆过点,,,解得:,直线的方程为:,即19、(1);(2)【解析】(1)先根据已知求出,再求及.(2)先根据已知得到,再利用分组求和求数列的前项和.【详解】(1)设等差数列的公差为d,因为,,所以,解得,所以;==.(2)由已知得,由(1)知,所以,=.【点睛】(1)本题主要考查等差数列的通项和前n项和求法,考查分组求和和等比数列的求和公式,意在考查学生对这些知识的掌握水平和计算推理能力.(2)有一类数列,它既不是等差数列,也不是等比数列,但是数列是等差数列或等比数列或常见特殊数列,则可以将这类数列适当拆开,可分为几个等差、等比数列或常见的特殊数列,然后分别求和,再将其合并即可.这叫分组求和法.20、(1)(2)或【解析】(1)根据垂径定理,可直接计算出圆的半径;(2)根据直线的斜率是否存在分类讨论,斜率不存在时,可得到直线方程为的直线满足题意,斜率存在时,利用直线与圆相切,即到直线的距离等于半径,然后解出关于斜率的方程即可.【小问1详解】不妨设圆的半径为,根据垂径定理,可得:解得:则圆的方程为:【小问2详解】当直线的斜率不存在时,则有:故此时直线与圆相切,满足题意当直线的斜率存在时,不妨设直线的斜率为,点的直线的距离为直线的方程为:则有:解得:,此时直线的方程为:综上可得,直线的方程为:或21、(1),.(2)5.【解析】(1)根据数列的递推公式探求出其项间关系,由此求出的公比,进而求得,的通项公式.(2)利用(1)的结论结合错位相减法求出,再将不等式变形,经推理计算得解.【小问1详解】解:设正项等比数列的公比为,当时,,即,则有,即,而,解得,又,则,所以,所以数列,的通项公式分别为:,.【小问2详解】解:由(1)知,,则,则,两式相减得:于是得,由得:,即,令,,显然,,,,,,由,解得,即数列在时是递增的,于是得当时,即,,则,所以不等式成立的n的最小值是5.22、(1)(2)【解析】根据,,成等比数列,椭圆上的点到焦点的距离的最大值为.列出关于、、的方程组,求出、的值,即可得出椭圆的方程;对直线和分两种情况讨论:一种是两条直线与坐标轴垂直,可求出两条弦长度之和;二是当两条直线斜率都存在时,设直线的方程为,将直线方程与椭圆方程联立,列出韦达定理,利用弦长公式可计算出的长度的表达式,然后利用相应的代换可求出的长度表达式,将两线段长度表达式相加,利用函数思想可求出两条弦长的取值范围最后将两种情况的取值范围进行合并即可得出答案【详解】易知,得,则,而,又,得,,因此,椭圆C的标准方程为;当两条直线中有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 门店食品管理制度
- 自考环境与资源保护法学真题模拟及答案
- 养老院情感交流制度
- 企业员工培训与素质提升制度
- 重质纯碱工复试评优考核试卷含答案
- 我国上市公司流动性与资本结构的模型构建与实证分析
- 我国上市公司引入双层股权结构的法律路径探析:基于国际经验与本土实践
- 印染烧毛工复试强化考核试卷含答案
- 裁剪工安全意识评优考核试卷含答案
- 木作文物修复师安全实践测试考核试卷含答案
- 钣金检验作业指导书
- 公司安全大讲堂活动方案
- 2025年江苏省无锡市梁溪区八下英语期末统考模拟试题含答案
- GB/T 42186-2022医学检验生物样本冷链物流运作规范
- 江苏省南通市2024-2025学年高一上学期1月期末考试数学试题
- T/CA 105-2019手机壳套通用规范
- 以真育责:小学生责任教育在求真理念下的探索与实践
- 2019营口天成消防JB-TB-TC5120 火灾报警控制器(联动型)安装使用说明书
- 部编版语文六年级上册第一单元综合素质测评B卷含答案
- 买卖肉合同样本
- 2025届高考语文复习:以《百合花》为例掌握小说考点
评论
0/150
提交评论