2026届河南省平顶山市、许昌市、汝州高二数学第一学期期末达标检测试题含解析_第1页
2026届河南省平顶山市、许昌市、汝州高二数学第一学期期末达标检测试题含解析_第2页
2026届河南省平顶山市、许昌市、汝州高二数学第一学期期末达标检测试题含解析_第3页
2026届河南省平顶山市、许昌市、汝州高二数学第一学期期末达标检测试题含解析_第4页
2026届河南省平顶山市、许昌市、汝州高二数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届河南省平顶山市、许昌市、汝州高二数学第一学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,那么函数在x=π处的瞬时变化率为()A. B.0C. D.2.在正四面体中,点为所在平面上动点,若与所成角为定值,则动点的轨迹是()A.圆 B.椭圆C.双曲线 D.抛物线3.已知为等比数列的前n项和,,,则()A.30 B.C. D.30或4.我们知道,偿还银行贷款时,“等额本金还款法”是一种很常见的还款方式,其本质是将本金平均分配到每一期进行偿还,每一期的还款金额由两部分组成,一部分为每期本金,即贷款本金除以还款期数,另一部分是利息,即贷款本金与已还本金总额的差乘以利率.自主创业的大学生张华向银行贷款的本金为48万元,张华跟银行约定,按照等额本金还款法,每个月还一次款,20年还清,贷款月利率为,设张华第个月的还款金额为元,则()A.2192 B.C. D.5.已知,,,,则()A. B.C. D.6.如图,在三棱柱中,为的中点,若,,,则下列向量与相等的是()A. B.C. D.7.把直线绕原点逆时针转动,使它与圆相切,则直线转动的最小正角度A. B.C. D.8.已知半径为2的圆经过点(5,12),则其圆心到原点的距离的最小值为()A.10 B.11C.12 D.139.函数在其定义域内可导,的图象如图所示,则导函数的图象为A. B.C. D.10.若双曲线的渐近线方程为,则实数a的值为()A B.C.2 D.11.设抛物线的焦点为F,过点F且垂直于x轴的直线与抛物线C交于A,B两点,若,则()A1 B.2C.4 D.812.已知动点的坐标满足方程,则的轨迹方程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,若,则实数m的值是___________.14.已知为椭圆C:的两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为________15.如图①,用一个平面去截圆锥,得到的截口曲线是椭圆.许多人从纯几何的角度出发对这个问题进行过研究,其中比利时数学家(1794-1847)的方法非常巧妙,极具创造性.在圆锥内放两个大小不同的球,使得它们分别与圆锥的侧面,截面相切,两个球分别与截面相切于,在截口曲线上任取一点,过作圆锥的母线,分别与两个球相切于,由球和圆的几何性质,可以知道,,于是.由的产生方法可知,它们之间的距离是定值,由椭圆定义可知,截口曲线是以为焦点的椭圆.如图②,一个半径为2的球放在桌面上,桌面上方有一个点光源,则球在桌面上的投影是椭圆.已知是椭圆的长轴,垂直于桌面且与球相切,,则椭圆的离心率为___________.16.某校开展“读书月”朗诵比赛,9位评委为选手A给出的分数如右边茎叶图所示.记分员在去掉一个最高分和一个最低分后算得平均分为91,复核员在复核时发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是___________.选手A87899924x15三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列,,其中,是各项均为正数的等比数列,满足,,且(1)求数列,的通项公式;(2)设,求数列的前n项和18.(12分)已知公差不为零的等差数列的前项和为,,,成等比数列且满足________.请在①;②;③,这三个条件中任选一个补充在上面题干中,并回答以下问题.(1)求数列的通项公式;(2)设,求数列的前项和.19.(12分)如图,在长方体中,,若点P为棱上一点,且,Q,R分别为棱上的点,且.(1)求直线与平面所成角的正弦值;(2)求平面与平面的夹角的余弦值.20.(12分)求下列不等式的解集:(1);(2)21.(12分)已知函数.(1)若,求函数的单调区间;(2)设存在两个极值点,且,若,求证:.22.(10分)如图,已知抛物线的焦点为,点是轴上一定点,过的直线交与两点.(1)若过的直线交抛物线于,证明纵坐标之积为定值;(2)若直线分别交抛物线于另一点,连接交轴于点.证明:成等比数列.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用导数运算法则求出,根据导数的定义即可得到结论【详解】由题设,,所以,函数在x=π处瞬时变化率为,故选:A2、B【解析】把条件转化为与圆锥的轴重合,面与圆锥的相交轨迹即为点的轨迹后即可求解.【详解】以平面截圆锥面,平面位置不同,生成的相交轨迹可以为抛物线、双曲线、椭圆、圆.令与圆锥的轴线重合,如图所示,则圆锥母线与所成角为定值,所以面与圆锥的相交轨迹即为点的轨迹.根据题意,不可能垂直于平面即轨迹不可能为圆.面不可能与圆锥轴线平行,即轨迹不可能是双曲线.可进一步计算与平面所成角为,即时,轨迹为抛物线,时,轨迹为椭圆,,所以轨迹为椭圆.故选:B.【点睛】本题考查了平面截圆锥面所得轨迹问题,考查了转化化归思想,属于难题.3、A【解析】利用等比数列基本量代换代入,列方程组,即可求解.【详解】由得,则等比数列的公比,则得,令,则即,解得或(舍去),,则故选:A4、D【解析】计算出每月应还的本金数,再计算第n个月已还多少本金,由此可计算出个月的还款金额.【详解】由题意可知:每月还本金为2000元,设张华第个月的还款金额为元,则,故选:D5、D【解析】根据对数函数的性质和幂函数的单调性可得正确的选项.【详解】因为,故,故,又,在上的增函数,故,故,故选:D.6、A【解析】利用空间向量基本定理求解即可【详解】由于M是的中点,所以故选:A7、B【解析】根据直线过原点且与圆相切,求出直线的斜率,再数形结合计算最小旋转角【详解】解析:由题意,设切线为,∴.∴或.∴时转动最小∴最小正角为.故选B.【点睛】本题考查直线与圆的位置关系,属于基础题8、B【解析】由条件可得圆心的轨迹是以点为圆心,半径为2的圆,然后可得答案.【详解】因为半径为2的圆经过点(5,12),所以圆心的轨迹是以点为圆心,半径为2的圆,所以圆心到原点的距离的最小值为,故选:B9、D【解析】分析:根据函数单调性、极值与导数的关系即可得到结论.详解:观察函数图象,从左到右单调性先单调递增,然后单调递减,最后单调递增.对应的导数符号为正,负,正.,选项D的图象正确.故选D.点睛:本题主要考查函数图象的识别和判断,函数单调性与导数符号的对应关系是解题关键.10、D【解析】由双曲线的渐近线方程结合已知可得.【详解】双曲线方程为所以渐近线为,故,解得:.故选:D11、C【解析】根据焦点弦的性质即可求出【详解】依题可知,,所以故选:C12、C【解析】此方程表示点到点的距离与到点的距离之差为8,而这正好符合双曲线的定义,点的轨迹是双曲线的右支,,的轨迹方程是,故选C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】结合已知条件和空间向量的数量积的坐标公式即可求解.【详解】因为,所以,解得.故答案为:.14、【解析】根据已知可得,设,利用勾股定理结合,求出,四边形面积等于,即可求解.【详解】因为为上关于坐标原点对称的两点,且,所以四边形为矩形,设,则,所以,,即四边形面积等于.故答案为:.15、##0.5【解析】利用球与圆锥相切,得出截面,在平面图形中求解,以及圆锥曲线的来源来理解切点为椭圆的一个焦点,求出,得出离心率.【详解】设球切于,切于E,,球半径为2,所以,,∴,又中,,,故椭圆长轴长为,,根据椭圆在圆锥中截面与二球相切的切点为椭圆的焦点知:球O与相切的切点为椭圆的一个焦点,且,,椭圆的离心率为.故答案:.16、4【解析】根据题意分和两种情况讨论,再根据平均分公式计算即可得出答案.【详解】解:当时,则去掉的最低分数为87分,最高分数为95分,则,所以,当时,则去掉的最低分数为87分,最高分数为分,则平均分为,与题意矛盾,综上.故答案为:4.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)利用公式法,基本量代换求出数列,的通项公式;(2)利用错位相减法求和.【小问1详解】设等比数列的公比为q,因为,所以,所以.所以,所以,所以.所以,所以,【小问2详解】,所以,,所以.所以18、(1)答案见解析(2)【解析】(1)首先由,,成等比数列,求出,再由①或②或③求出数列的首项和公差,即可求得的通项公式;(2)求得的通项公式,结合裂项相消法求得.【小问1详解】设等差数列的公差为,由,,成等比数列,可得,即,∵,故,选①:由,可得,解得,所以数列的通项公式为选②:由,可得,即,所以,解得,所以;选③:由,可得,即,所以,解得,所以;【小问2详解】由(1)可得,所以.19、(1)(2)【解析】(1)建立如图所示的空间直角坐标系,用空间向量法求线面角;(2)用空间向量法求二面角【小问1详解】以D为坐标原点,射线方向为x,y,z轴正方向建立空间直角坐标系.当时,,所以,设平面的法向量为,所以,即不妨得,,又,所以,则【小问2详解】在长方体中,因为平面,所以平面平面,因为平面与平面交于,因为四边形为正方形,所以,所以平面,即为平面的一个法向量,,所以,又平面的法向量为,所以.20、(1)(2)【解析】(1)利用一元二次不等式的解法求解;(2)利用分式不等式的解法求解.【小问1详解】解:因为,所以,解得,所以不等式的解集是;【小问2详解】因为,所以,所以,即,解得,所以不等式的解集是.21、(1)在和上单调递增,在上单调递减;(2)证明见解析【解析】(1)首先求出函数的导函数,再令、,分别求出函数的单调区间;(2)先求出,构造函数,求出函数的导数,得到函数的单调区间,求出函数的最小值,从而证明结论【小问1详解】解:当时,,所以,令,解得或,令,解得,所以函数在和上单调递增,在上单调递减;【小问2详解】解:,,,因为存在两个极值点,,所以存在两个互异的正实数根,,所以,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论