版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省射阳县实验初中2026届高二上数学期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某次数学考试试卷评阅采用“双评+仲裁”的方式,规则如下:两位老师独立评分,称为一评和二评,当两者所评分数之差的绝对值小于或等于分时,取两者平均分为该题得分;当两者所评分数之差的绝对值大于分时,再由第三位老师评分,称之为仲裁,取仲裁分数和一、二评中与之接近的分数的平均分为该题得分.如图所示,当,,时,则()A. B.C.或 D.2.数学家欧拉1765年在其所著的《三角形几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知△ABC的顶点分别为,,,则△ABC的欧拉线方程为()A. B.C. D.3.如图,四棱锥的底面是矩形,设,,,是棱上一点,且,则()A. B.C. D.4.设的内角的对边分别为的面积,则()A. B.C. D.5.若“”是“”的充分不必要条件,则实数a的取值范围为A. B.或C. D.6.设命题,则为()A. B.C. D.7.抛物线的焦点到准线的距离为()A. B.C. D.8.抛物线有一条重要的性质:平行于抛物线的轴的光线,经过抛物线上的一点反射后经过它的焦点.反之,从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴.已知抛物线,从点发出一条平行于x轴的光线,经过抛物线两次反射后,穿过点,则光线从A出发到达B所走过的路程为()A.8 B.10C.12 D.149.在平行六面体ABCD﹣A1B1C1D1中,AC与BD的交点为M,设=,=,=,则=()A.++ B.+C.++ D.+10.入冬以来,梁老师准备了4个不同的烤火炉,全部分发给楼的三个办公室(每层楼各有一个办公室).1,2楼的老师反映办公室有点冷,所以1,2楼的每个办公室至少需要1个烤火队,3楼老师表示不要也可以.则梁老师共有多少种分发烤火炉的方法()A.108 B.36C.50 D.8611.双曲线型自然通风塔外形是双曲线的一部分绕其虚轴旋转所成的曲面,如图所示,它的最小半径为米,上口半径为米,下口半径为米,高为24米,则该双曲线的离心率为()A.2 B.C. D.12.命题“若,则”为真命题,那么不可能是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若圆的一条直径的端点是、,则此圆的方程是_______14.设,若,则S=________.15.已知双曲线的两个焦点分别为,,为双曲线上一点,且,则的值为________16.如果椭圆上一点P到焦点的距离等于6,则点P到另一个焦点的距离为____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,平面ABCD,,,且,,.(1)求证:平面PAC;(2)已知点M是线段PD上的一点,且,当三棱锥的体积为1时,求实数的值.18.(12分)如图,在空间四边形中,分别是的中点,分别是上的点,满足.(1)求证:四点共面;(2)设与交于点,求证:三点共线.19.(12分)设椭圆的左,右焦点分别为,其离心率为,且点在C上.(1)求C的方程;(2)O为坐标原点,P为C上任意一点.若M为的中点,过M且平行于的直线l交椭圆C于A,B两点,是否存在实数,使得?若存在,求值;若不存在,说明理由.20.(12分)已知集合,.若,且“”是“”的充分不必要条件,求实数a的取值范围21.(12分)已知椭圆的中心在原点,焦点为,,且长轴长为4.(1)求椭圆的方程;(2)直线与椭圆相交于A,两点,求弦长.22.(10分)椭圆的左右焦点分别为,,焦距为,为原点.椭圆上任意一点到,距离之和为.(1)求椭圆的标准方程;(2)过点的斜率为2的直线交椭圆于、两点,求的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】按照框图考虑成立和不成立即可求解.【详解】因为,,,所以输入,当成立时,,即,解得,,满足条件;当不成立时,,即,解得,,不满足条件;故.故选:B.2、A【解析】求出重心坐标,求出AB边上高和AC边上高所在直线方程,联立两直线可得垂心坐标,即可求出欧拉线方程.【详解】由题可知,△ABC的重心为,可得直线AB的斜率为,则AB边上高所在的直线斜率为,则方程为,直线AC的斜率为,则AC边上高所在的直线斜率为2,则方程为,联立方程可得△ABC的垂心为,则直线GH斜率为,则可得直线GH方程为,故△ABC的欧拉线方程为.故选:A.3、B【解析】根据空间向量基本定理求解【详解】由已知故选:B4、A【解析】利用三角形面积公式、二倍角正弦公式有,再由三角形内角的性质及余弦定理化简求即可.【详解】由,∴,在中,,∴,解得.故选:A.5、D【解析】“”是“”的充分不必要条件,结合集合的包含关系,即可求出的取值范围.【详解】∵“”是“”的充分不必要条件∴或∴故选:D.【点睛】本题考查充分必要条件,根据充要条件求解参数的范围时,可把充分条件、必要条件或充要条件转化为集合间的关系,由此得到不等式(组)后再求范围.解题时要注意,在利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.6、D【解析】利用含有一个量词的命题的否定的定义判断.【详解】因为命题是全称量词命题,所以其否定是存在量词命题,即,故选:D7、B【解析】根据抛物线的几何性质可得选项.【详解】由得,所以,所以抛物线的焦点到准线的距离为1,故选:B.8、C【解析】利用抛物线的定义求解.【详解】如图所示:焦点为,设光线第一次交抛物线于点,第二次交抛物线于点,过焦点F,准线方程为:,作垂直于准线于点,作垂直于准线于点,则,,,,故选:C9、B【解析】利用向量三角形法则、平行四边形法则、向量共线定理即可得出【详解】如图所示,∵=+,又=,=-,=,∴=+,故选:B10、C【解析】运用分类计数原理,结合组合数定义进行求解即可.【详解】当3楼不要烤火炉时,不同的分发烤火炉的方法为:;当3楼需要1个烤火炉时,不同的分发烤火炉的方法为:;当3楼需要2个烤火炉时,不同的分发烤火炉的方法为:,所以分发烤火炉的方法总数为:,故选:C【点睛】关键点睛:运用分类计数原理是解题的关键.11、A【解析】以的中点О为坐标原点,建立平面直角坐标系,设双曲线的方程为,设,,代入双曲线的方程,求得,得到,进而求得双曲线的离心率.【详解】以的中点О为坐标原点,建立如图所示的平面直角坐标系,则,设双曲线的方程为,则,可设,,又由,在双曲线上,所以,解得,,即,所以该双曲线的离心率为.故选:A.第II卷12、D【解析】根据命题真假的判断,对四个选项一一验证即可.【详解】对于A:若,则必成立;对于B:若,则必成立;对于C:若,则必成立;对于D:由不能得出,所以不可能是.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先设圆上任意一点的坐标,然后利用直径对应的圆周角为直角,再利用向量垂直建立方程即可【详解】设圆上任意一点的坐标为可得:,则有:,即解得:故答案为:14、1007【解析】可证f(x)+f(1﹣x)=1,由倒序相加法可得所求为1007对的组合,即1007个1,可得答案【详解】解:∵函数f(x),∴f(x)+f(1﹣x)1故可得S=f()+f()…+f()=1007×1=1007,故答案为:1007点睛】本题考查倒序相加法求和,推断出f(x)+f(1﹣x)=1是解题的关键.15、2【解析】求得双曲线的a,b,c,不妨设P为双曲线右支上的点,|PF1|=m,|PF2|=n,利用双曲线的定义、余弦定理列出方程组,求出mn即可.【详解】双曲线的a=2,b=1,c=,不妨设P为双曲线右支上的点,|PF1|=m,|PF2|=n,则,①由余弦定理可得,②联立①②可得故答案为:216、14【解析】根据椭圆的定义及椭圆上一点P到焦点的距离等于6,可得的长.【详解】解:根据椭圆的定义,又椭圆上一点P到焦点的距离等于6,,故,故答案:.【点睛】本题主要考查椭圆的定义及简单性质,相对简单.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)3【解析】(1)证明出,且,从而证明出线面垂直;(2)先用椎体体积公式求出,利用体积之比得到线段之比,从而得到的值.【小问1详解】证明:∵平面ABCD,且平面ABCD,∴.又因为,且,∴四边形ABCD为直角梯形.又因为,,易得,,∴,∴.又因为AC,PA是平面PAC的两条相交直线,∴平面PAC.【小问2详解】由(1)知且,∴.又∵平面ABCD,.又∵,∴,∴点M到平面ABC的距离为,∴,∴.18、(1)证明见解析(2)证明见解析【解析】【小问1详解】连接AC,分别是的中点,.在中,,所以四点共面.【小问2详解】,所以,又平面平面,同理平面,为平面与平面的一个公共点.又平面平面,即三点共线.19、(1);(2).【解析】(1)列出关于a、b、c的方程组求解即可;(2)直线l斜率不存在时,易得λ的值;斜率存在时,设l方程为,联立直线l与椭圆C的方程,求出;求出OP方程,联立OP方程与椭圆C的方程,求出;代入即可求得λ.【小问1详解】由已知可得,解得,∴椭圆C的标准方程为.【小问2详解】若直线的斜率不存在时,,∴;当斜率存在时,设直线l的方程为.联立直线l与椭圆方程,消去y,得,∴.∵,设直线的方程为,联立直线与椭圆方程,消去y,得,解得.∴,∴,同理,∴,∵,∴,故,存在满足条件,综上可得,存在满足条件.【点睛】关键点点睛:本题的关键在于弦长公式的运用,AB斜率为k,,M(1,0),则,,,将弦长之积转化为韦达定理求解.20、【解析】由题设A是的真子集,结合已知集合的描述列不等式求a的范围.【详解】由“”是“”的充分不必要条件,即A是的真子集,又,,所以,可得,则实数a的取值范围为21、(1)(2)【解析】(1)由已知直接可得;(2)联立方程组求出A,两点坐标,再由两点间距离公式可得.【小问1详解】∵椭圆的中心在原点,焦点为,且长轴长为4,,,,故椭圆的方程为;【小问2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 空调部门工作年终总结(3篇)
- 职业健康监护中的健康影响因素分析
- 传声港新闻源软文平台服务白皮书
- 职业健康促进的成本敏感性分析
- 黑龙江2025年黑龙江生态工程职业学院招聘教师-辅导员45人笔试历年参考题库附带答案详解
- 职业健康与员工职业发展:医疗领导力健康素养
- 苏州江苏苏州常熟市卫生健康系统招聘编外劳动合同制工作人员9人笔试历年参考题库附带答案详解
- 眉山2025年四川眉山仁寿县乡镇事业单位从服务基层项目人员中招聘27人笔试历年参考题库附带答案详解
- 温州浙江温州瓯海区公安分局招聘警务辅助人员40人笔试历年参考题库附带答案详解
- 浙江2025年浙江省气象部门招聘工作人员8人(第二批)笔试历年参考题库附带答案详解
- 带式输送机运输巷作为进风巷专项安全技术措施
- 大连医院应急预案(3篇)
- 合成生物学在呼吸系统疾病治疗中的应用
- 开拓智慧农业的商业计划书
- 2026届黑龙江省优才计划 中学生标准学术能力测试高三数学联考试题(含解析)
- 软件项目绩效考核制度方案
- 春节前停工停产安全培训课件
- 洁净室安全管理培训内容课件
- 真性红细胞增多症
- 临床检验初级师历年试题及答案2025版
- 干部教育培训行业跨境出海战略研究报告
评论
0/150
提交评论