版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
杜郎口中学2026届数学高二上期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在平面直角坐标系中,直线+的倾斜角是()A. B.C. D.2.已知等比数列的前项和为,首项为,公比为,则()A. B.C. D.3.函数f(x)=-1+lnx,对∀x0,f(x)≥0成立,则实数a的取值范围是()A(-∞,2] B.[2,+∞)C.(-∞,1] D.[1,+∞)4.已知圆,为圆外的任意一点,过点引圆的两条切线、,使得,其中、为切点.在点运动的过程中,线段所扫过图形的面积为()A. B.C. D.5.已知函数,.若存在三个零点,则实数的取值范围是()A. B.C. D.6.如果,,…,是抛物线C:上的点,它们的横坐标依次为,,…,,点F是抛物线C的焦点.若=10,=10+n,则p等于()A.2 B.C. D.47.金刚石的成分为纯碳,是自然界中天然存在的最坚硬物质,它的结构是由8个等边三角形组成的正八面体.若某金刚石的棱长为2,则它的体积为()A. B.C. D.8.设是等差数列的前项和,已知,,则等于()A. B.C. D.9.下列结论中正确的有()A.若,则 B.若,则C.若,则 D.若,则10.已知“”的必要不充分条件是“或”,则实数的最小值为()A. B.C. D.11.若圆C与直线:和:都相切,且圆心在y轴上,则圆C的方程为()A. B.C. D.12.若方程表示焦点在y轴上的双曲线,则k的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的前项和为,且满足,则______.14.容积为V圆柱形密封金属饮料罐,它的高与底面半径比值为___________时用料最省.15.假设要考查某公司生产的袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数法抽取样本时,先将800袋牛奶按000,001,,799进行编号,若从随机数表第7行第8列的数开始向右读,则得到的第4个的样本个体的编号是______(下面摘取了随机数表第7行到第9行)84421753315724550688770474476721763350258392120676630163785916955667199810507175128673580744395238793321123429786456078252420744381551001342996602795416.已知单位空间向量,,满足,.若空间向量满足,且对于任意实数,的最小值是2,则的最小值是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是抛物线的焦点,直线交拋物线于、两点.(1)若直线过点且,求;(2)若平分线段,求直线的方程.18.(12分)某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,超过的部分,每超出(不足,按计算)需要再收费5元.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).(1)求这60天每天包裹数量的平均值和中位数;(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.已知公司前台有工作人员3人,每人每天工资100元,以样本估计总体,试估计该公司每天的利润有多少元?(3)小明打算将四件礼物随机分成两个包裹寄出,且每个包裹重量都不超过,求他支付的快递费为45元的概率.19.(12分)已知向量,(1)求;(2)求;(3)若(),求的值20.(12分)在直角坐标系中,直线的参数方程为(为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)求直线的普通方程,曲线C的直角坐标方程;(2)设直线与曲线C相交于A,B两点,点,求的值.21.(12分)已知数列的前项和为,且.(1)求的通项公式;(2)求数列的前项和.22.(10分)已知函数在其定义域内有两个不同的极值点(1)求a的取值范围;(2)设的两个极值点分别为,证明:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由直线方程得斜率,从而得倾斜角【详解】由直线方程知直角斜率为,在上正切值为1的角为,即为倾斜角故选:B2、D【解析】根据求解即可.【详解】因为等比数列,,所以.故选:D3、B【解析】由导数求得的最小值,由最小值非负可得的范围【详解】定义域是,,若,则在上恒成立,单调递增,,不合题意;若,则时,,递减,时,,递增,所以时,取得极小值也是最小值,由题意,解得故选:B4、D【解析】连接、、,分析可知四边形为正方形,求出点的轨迹方程,分析可知线段所扫过图形为是夹在圆和圆的圆环,利用圆的面积公式可求得结果.【详解】连接、、,由圆的几何性质可知,,又因为且,故四边形为正方形,圆心,半径为,则,故点的轨迹方程为,所以,线段扫过的图形是夹在圆和圆的圆环,故在点运动的过程中,线段所扫过图形的面积为.故选:D.5、B【解析】根据题意,当时,有一个零点,进而将问题转化为当时,有两个实数根,再研究函数即可得答案.【详解】解:因为存在三个零点,所以方程有三个实数根,因为当时,由得,解得,有且只有一个实数根,所以当时,有两个实数根,即有两个实数根,所以令,则,所以当时,,单调递增,当时,,单调递减,因为,,,所以的图象如图所示,所以有两个实数根,则故选:B6、A【解析】根据抛物线定义得个等式,相加后,利用已知条件可得结果.【详解】抛物线C:的准线为,根据抛物线的定义可知,,,,,所以,所以,所以,所以.故选:A【点睛】关键点点睛:利用抛物线的定义解题是解题关键,属于基础题.7、C【解析】由几何关系先求出一个正四面体的高,再结合锥体体积公式即可求解正八面体的体积.【详解】如图,设底面中心为,连接,由几何关系知,,则正八面体体积为.故选:C8、C【解析】依题意有,解得,所以.考点:等差数列的基本概念.【易错点晴】本题主要考查等差数列的基本概念.在解有关等差数列的问题时可以考虑化归为和等基本量,通过建立方程(组)获得解.即等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量、,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算9、D【解析】根据基本初等函数的导数和运算法则分别计算函数的导数,即可判断选项.【详解】A.若,则,故A错误;B.若,则,故B错误;C.若,则,故C错误;D.若,则,故D正确.故选:D10、A【解析】首先解不等式得到或,根据题意得到,再解不等式组即可.【详解】,解得或,因为“”的必要不充分条件是“或”,所以.实数的最小值为.故选:A11、B【解析】首先求出两平行直线间的距离,即可求出圆的半径,设圆心坐标为,,利用圆心到直线的距离等于半径得到方程,求出的值,即可得解;【详解】解:因为直线:和:的距离,由圆C与直线:和:都相切,所以圆的半径为,又圆心在轴上,设圆心坐标为,,所以圆心到直线的距离等于半径,即,所以或(舍去),所以圆心坐标为,故圆的方程为;故选:B12、B【解析】由条件可得,即可得到答案.【详解】方程表示焦点在y轴上的双曲线所以,即故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据所给的通项公式,代入求得,并由代入求得,即可求得的值.【详解】数列的前n项和,则,而,,∴,则,故答案为:.14、【解析】设圆柱的底面半径为,高为,容积为,由,得到,进而求得表面积,结合不等式,即可求解.【详解】设圆柱的底面半径为,高为,容积为,则,即有,可得圆柱的表面积为,当且仅当时,即时最小,即用料最省,此时,可得.故答案为:.15、【解析】根据随机数表法依次列举出来即可.【详解】根据随机数表法最先检测的3袋牛奶编号为:331、572、455、068.故答案为:068.16、【解析】以,方向为轴,垂直于,方向为轴建立空间直角坐标系,根据条件求得坐标,由二次函数求最值即可求得最小值.【详解】以,方向为轴,垂直于,方向为轴建立空间直角坐标系,则,由可设,由是单位空间向量可得,由可设,,当,的最小值是2,所以,取,,,当时,最小值为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)分析可知直线的方程为,将直线的方程与抛物线方程联立,求出点的坐标,利用抛物线的定义可求得;(2)利用点差法可求得直线的斜率,利用点斜式可得出直线的方程.【小问1详解】解:设点、,则直线的倾斜角为,易知点,直线的方程为,联立,可得,由题意可知,则,,因此,.【小问2详解】解:设、,若轴,则线段的中点在轴上,不合乎题意,所以直线的斜率存在,因为、在抛物线上,则,两式相减得,又因为为的中点,则,所以,直线的斜率为,此时,直线的方程为,即.18、(1)公司每天包裹的平均数和中位数都为260件.(2)该公司平均每天的利润有1000元.(3).【解析】(1)对于平均数,运用平均数的公式即可;由于中位数将频率分布直方图分成面积相等的两部分,先确定中位数位于哪一组,然后建立关于中位数的方程即可求出.(2)利用每天的总收入减去工资的支出,即可得到公司每天的利润.(3)该为古典概型,根据题意分别确定总的基本事件个数,以及事件“快递费为45元”包括的基本事件个数,即可求出概率.【详解】(1)每天包裹数量的平均数为;或:由图可知每天揽50、150、250、350、450件的天数分别为6、6、30、12、6,所以每天包裹数量的平均数为设中位数为x,易知,则,解得x=260.所以公司每天包裹的平均数和中位数都为260件.(2)由(1)可知平均每天的揽件数为260,利润为(元),所以该公司平均每天的利润有1000元(3)设四件礼物分为二个包裹E、F,因为礼物A、C、D共重(千克),礼物B、C、D共重(千克),都超过5千克,故E和F的重量数分别有,,,,共5种,对应的快递费分别为45、45、50,45,50(单位:元)故所求概率为.【点睛】主要考查了频率分布直方图的平均数,中位数求解,以及古典概型,属于中档题.19、(1)(2)(3)【解析】(1)根据向量数量积的坐标表示即可得解;(2)求出,再根据空间向量的模的坐标表示即可得解;(3)由,可得,再根据数量积的运算律即可得解.【小问1详解】解:;【小问2详解】解:;【小问3详解】解:因为,所以,即,解得.20、(1)直线的普通方程为;曲线C的直角坐标方程为(2)【解析】(1)根据转换关系将参数方程和极坐标方程转化为直角坐标方程即可;(2)将直线的参数方程化为标准形式,代入曲线C的直角坐标方程,设点A,B对应的参数分别为,利用韦达定理即可得出答案.【小问1详解】解:将直线的参数方程中的参数消去得,则直线的普通方程为,由曲线C的极坐标方程为,得,即,由得曲线C的直角坐标方程为;【小问2详解】解:点满足,故点在直线上,将直线的参数方程化为标准形式(为参数),代入曲线C的直角坐标方程为,得,设点A,B对应的参数分别为,则,所以.21、(1);(2).【解析】(1)利用,结合已知条件,即可容易求得通项公式;(2)根据(1)中所求,对数列进行裂项求和,即可求得.【小问1详解】当时,.当时,,因为当时,,所以.【小问2详解】因为,所以,故数列的前项和.22、(1);(2)证明见解析.【解析】(1)对函数求导,把问题转化为导函数值为0的方程有两个正根,再构造函数求解作答.(2)将所证不等式等价转化,构造函数,利用导数探讨其单调
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年食品营养标签规范应用培训
- 2026年IT运维自动化工具实操培训
- 2026贵州省人民检察院直属事业单位招聘1人备考题库及答案详解一套
- 2026陕西长岭纺织机电科技有限公司招聘备考题库(13人)有完整答案详解
- 2026陕西西北工业大学材料学院功能密封材料团队招聘1人备考题库及一套答案详解
- 课件放飞和平鸽
- 职业健康风险生物标志物研究进展
- 职业健康服务质量评价指标构建
- 职业健康应急响应多学科人才培养体系
- 精准扶贫入户培训课件
- 北京市顺义区2025-2026学年八年级上学期期末考试英语试题(原卷版+解析版)
- 中学生冬季防溺水主题安全教育宣传活动
- 2026年药厂安全生产知识培训试题(达标题)
- 2026年陕西省森林资源管理局局属企业公开招聘工作人员备考题库及参考答案详解1套
- 冷库防护制度规范
- 承包团建烧烤合同范本
- 口腔种植牙科普
- 2025秋人教版七年级全一册信息科技期末测试卷(三套)
- 抢工补偿协议书
- 广东省广州市番禺区2026届高一数学第一学期期末联考试题含解析
- 2026年广东省佛山市高三语文联合诊断性考试作文题及3篇范文:可以“重读”甚至“重构”这些过往
评论
0/150
提交评论