版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古包头稀土高新区第二中学2026届高二上数学期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在平面直角坐标系中,椭圆的左、右焦点分别为,,过且垂直于轴的直线与交于,两点,与轴交于点,,则的离心率为()A. B.C. D.2.已知点P(5,3,6),直线l过点A(2,3,1),且一个方向向量为,则点P到直线l的距离为()A. B.C. D.3.已知五个数据3,4,x,6,7的平均数是x,则该样本标准差为()A.1 B.C. D.24.阿基米德曾说过:“给我一个支点,我就能撬动地球”.他在做数学研究时,有一个有趣的问题:一个边长为2的正方形内部挖了一个内切圆,现在以该内切圆的圆心且平行于正方形的一边的直线为轴旋转一周形成几何体,则该旋转体的体积为()A. B.C. D.5.曲线在点处的切线过点,则实数()A. B.0C.1 D.26.抛物线的焦点为F,A,B是拋物线上两点,若,若AB的中点到准线的距离为3,则AF的中点到准线的距离为()A.1 B.2C.3 D.47.下列事件:①连续两次抛掷同一个骰子,两次都出现2点;②某人买彩票中奖;③从集合中任取两个不同元素,它们的和大于2;④在标准大气压下,水加热到90℃时会沸腾.其中是随机事件的个数是()A.1 B.2C.3 D.48.边长为的正方形沿对角线折成直二面角,、分别为、的中点,是正方形的中心,则的大小为()A. B.C. D.9.设是周期为2的奇函数,当时,,则()A. B.C. D.10.已知直线与圆交于两点,过分别作的垂线与轴交于两点,则A.2 B.3C. D.411.函数的导数记为,则等于()A. B.C. D.12.我国古代数学名著《算法统宗》记有行程减等问题:三百七十八里关,初行健步不为难次日脚痛减一半,六朝才得到其关.要见每朝行里数,请公仔细算相还.意为:某人步行到378里的要塞去,第一天走路强壮有力,但把脚走痛了,次日因脚痛减少了一半,他所走的路程比第一天减少了一半,以后几天走的路程都比前一天减少一半,走了六天才到达目的地.请仔细计算他每天各走多少路程?在这个问题中,第四天所走的路程为()A.96 B.48C.24 D.12二、填空题:本题共4小题,每小题5分,共20分。13.抛物线的焦点坐标为__________14.已知椭圆的左、右焦点分别为、,关于原点对称的点A、B在椭圆上,且满足,若令且,则该椭圆离心率的取值范围为___________15.已知,若三个数成等差数列,则_________;若三个数成等比数列,则__________16.若,,,四点中恰有三点在椭圆上,则椭圆C的方程为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,平面平面,底面是菱形,E为的中点(1)证明:(2)已知,求二面角的余弦值18.(12分)已知双曲线中心在原点,离心率为2,一个焦点(1)求双曲线方程;(2)设Q是双曲线上一点,且过点F、Q的直线l与y轴交于点M,若,求直线l的方程19.(12分)已知函数(1)求函数在点处的切线方程;(2)求函数的单调区间及极值20.(12分)已知抛物线C的对称轴是y轴,点在曲线C上.(1)求抛物线的标准方程;(2)过抛物线焦点的倾斜角为直线l与抛物线交于A、B两点,求线段AB的长度.21.(12分)已知抛物线的焦点,点在抛物线上.(1)求;(2)过点向轴作垂线,垂足为,过点的直线与抛物线交于两点,证明:为直角三角形(为坐标原点).22.(10分)已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点在椭圆上(1)经过点M(1,)作一直线交椭圆于AB两点,若点M为线段AB的中点,求直线的斜率;(2)设椭圆C的上顶点为P,设不经过点P的直线与椭圆C交于C,D两点,且,求证:直线过定点
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由题意结合几何性质可得为等腰三角形,且,所以,求出的长,结合椭圆的定义可得答案.【详解】如图,由题意轴,轴,则又为的中点,则为的中点,又,则为等腰三角形,且,所以将代入椭圆方程得,,即所以,则由椭圆的定义可得,即则椭圆的离心率故选:B2、B【解析】根据向量和直线l的方向向量的关系即可求出点P到直线l的距离.【详解】由题意,,,,,,到直线的距离为.故选:B.3、B【解析】先求出的值,然后利用标准差公式求解即可【详解】解:因为五个数据3,4,x,6,7的平均数是x,所以,解得,所以标准差,故选:B4、B【解析】根据题意,结合圆柱和球的体积公式进行求解即可.【详解】由题意可知:该旋转体的体积等于底面半径为,高为的圆柱的体积减去半径为的球的体积,即,故选:B5、A【解析】由导数的几何意义得切线方程为,进而得.【详解】解:因为,,,所以,切线方程为,因为切线过点,所以,解得故选:A6、C【解析】结合抛物线的定义求得,由此求得线段的中点到准线的距离【详解】抛物线方程为,则,由于中点到准线的距离为3,结合抛物线的定义可知,即,所以线段的中点到准线的距离为.故选:C7、B【解析】因为随机事件指的是在一定条件下,可能发生,也可能不发生的事件,只需逐一判断4个事件哪一个符合这种情况即可【详解】解:连续两次抛掷同一个骰子,两次都出现2点这一事件可能发生也可能不发生,①是随机事件某人买彩票中奖这一事件可能发生也可能不发生,②是随机事件从集合,2,中任取两个元素,它们的和必大于2,③是必然事件在标准大气压下,水加热到时才会沸腾,④是不可能事件故随机事件有2个,故选:B8、B【解析】建立空间直角坐标系,以向量法去求的大小即可解决.【详解】由题意可得平面,,则两两垂直以O为原点,分别以OB、OA、OC所在直线为x、y、z轴建立空间直角坐标系则,,,,又,则故选:B9、A【解析】由周期函数得,再由奇函数的性质通过得结论【详解】∵函数是周期为2的周期函数,∴,而,又函数为奇函数,∴.故选A【点睛】本题考查函数的周期性与奇偶性,属于基础题.此类题型,求函数值时,一般先用周期性化自变量到已知区间关于原点对称的区间,然后再由奇函数性质求得函数值10、D【解析】由题意,圆心到直线的距离,∴,∵直线∴直线的倾斜角为,∵过分别作的垂线与轴交于两点,∴,故选D.11、D【解析】求导后代入即可.【详解】,.故选:D.12、C【解析】每天所走的里程构成公比为的等比数列,设第一天走了里,利用等比数列基本量代换,直接求解.【详解】由题意可知:每天所走的里程构成公比为的等比数列.第一天走了里,第4天走了.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】化成标准形式,结合焦点定义即可求解.【详解】由,得,故抛物线的焦点坐标为故答案为:14、【解析】由得为矩形,则,故,结合正弦函数即可求得范围【详解】由已知可得,且四边形为矩形所以,又因为,所以得离心率因为,所以,可得,从而故答案为:15、①.4②.【解析】由等差中项与等比中项计算即可.【详解】若a,b,c三个数成等差数列.所以.若a,b,c三个数成等比数列.所以故答案为:4,.16、【解析】由于,关于轴对称,故由题设知C经过,两点,C不经过点,然后求出a,b,即可得到椭圆的方程.【详解】解:由于,关于轴对称,故由题设知经过,两点,所以.又由知,不经过点,所以点在上,所以.因此,故方程为.故答案为:.【点睛】求椭圆的标准方程有两种方法:①定义法:根据椭圆的定义,确定,的值,结合焦点位置可写出椭圆方程②待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出,;若焦点位置不明确,则需要分焦点在轴上和轴上两种情况讨论,也可设椭圆的方程为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析(2)【解析】(1)利用垂直关系,转化为证明线面垂直,即可证明线线垂直;(2)利用垂直关系,建立空间直角坐标系,分别求平面和平面的法向量,利用公式,即可求解二面角的余弦值.【小问1详解】如图,取的中点,连结,,,因为,所以,因为平面平面,平面平面,所以平面,且平面,所以,又因为底面时菱形,所以,又因为点分别为的中点,所以,所以,且,所以平面,又因为平面,所以;【小问2详解】由(1)可知,平面,连结,因为,,点为的中点,所以,则两两垂直,以点为坐标原点,建立空间直角坐标系,如图所示:则,,,所以,,,,,,所以,,,设平面的法向量为,则,令,则,,故,设平面的法向量为,所以,因为二面角为锐二面角,所以二面角的余弦值为.18、(1)(2)或【解析】(1)依题意设所求的双曲线方程为,则,再根据离心率求出,即可求出,从而得到双曲线方程;(2)依题意可得直线的斜率存在,设,即可得到的坐标,依题意可得或,分两种情况分别求出的坐标,再根据的双曲线上,代入曲线方程,即可求出,即可得解;【小问1详解】解:设所求的双曲线方程为(,),则,,∴,又则,∴所求的双曲线方程为【小问2详解】解:∵直线l与y轴相交于M且过焦点,∴l的斜率一定存在,则设.令得,∵且M、Q、F共线于l,∴或当时,,,∴,∵Q在双曲线上,∴,∴,当时,,代入双曲线可得:,∴综上所求直线l的方程为:或19、(1)+1;(2)单调增区间,单调减区间是和,极大值为,极小值为【解析】(1)根据导数的几何意义可求出切线斜率,求出后利用点斜式即可得解;(2)求出函数导数后,解一元二次不等式分别求出、时的取值范围即可得解.【详解】(1)因为,所以,∴切线方程为,即+1;(2),所以当或时,,当时,,所以函数单调增区间是,单调减区间是和,极大值为,极小值为20、(1)(2)16【解析】(1)设抛物线的标准方程为:,再代入求解即可.(2)根据焦点弦公式求解即可.【小问1详解】由题意知抛物线C的对称轴是y轴,点在曲线C上,所以抛物线开口向上,设抛物线的标准方程为:,代入点的坐标得:,解得则抛物线的标准方程为:.【小问2详解】焦点,则直线的方程是,设,,由得,,所以,则,故.21、(1)(2)证明见解析【解析】(1)点代入即可得出抛物线方程,根据抛物线的定义即可求得.(2)由题,设直线的方程为:,与抛物线方程联立,可得,利用韦达定理证得即可得出结论.【小问1详解】点在抛物线上.,则,所以.【小问2详解】证明:由题,设直线的方程为:,点联立方程,消得:,由韦达定理有,由,所以,所以,所以,所以为直角三角形.22、(1);(2)证明见解析.【解析】(1)设椭圆的方程为代入点的坐标求出椭圆的方程,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年前端框架开发应用精讲课程
- 2026年咖啡饮品研发创新实战课程
- 人身保险经纪代理业务管理手册
- 2026浙江杭州市西溪中学教师招聘备考题库及答案详解参考
- 2026年劳动用工合规风险防控课程
- 基础化工行业专题:硫磺向全球资源博弈下的新周期演进
- 超星美学课件
- 职业噪声工人心血管康复训练方案优化-1
- 职业噪声与心血管疾病患者康复效果评价
- 四川省攀枝花市第十二中学2021-2021学年高一政治3月调研检测试题
- 2026年安徽皖信人力资源管理有限公司公开招聘宣城市泾县某电力外委工作人员笔试备考试题及答案解析
- 骨科患者石膏固定护理
- 供热运行与安全知识课件
- 长期照护师技能考试试卷与答案
- Unit 1 Time to Relax Section A(1a-2d)教学课件 人教新教材2024版八年级英语下册
- SJG 46-2023 建设工程安全文明施工标准
- 部编版小学语文四年级上册习作《我的心儿怦怦跳》精美课件
- DLT 593-2016 高压开关设备和控制设备
- DB11∕T 190-2016 公共厕所建设标准
- 房屋过户提公积金合同
- D-二聚体和FDP联合检测在临床中的应用现状
评论
0/150
提交评论