2026届石家庄市第四十中学数学高二上期末统考试题含解析_第1页
2026届石家庄市第四十中学数学高二上期末统考试题含解析_第2页
2026届石家庄市第四十中学数学高二上期末统考试题含解析_第3页
2026届石家庄市第四十中学数学高二上期末统考试题含解析_第4页
2026届石家庄市第四十中学数学高二上期末统考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届石家庄市第四十中学数学高二上期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数在处有极小值,则c的值为()A.2 B.4C.6 D.2或62.曲线:在点处的切线方程为A. B.C. D.3.已知椭圆的左、右焦点分别为、,点A是椭圆短轴的一个顶点,且,则椭圆的离心率()A. B.C. D.4.直线恒过定点()A. B.C. D.5.已知椭圆C:的两个焦点分别为,,椭圆C上有一点P,则的周长为()A.8 B.10C. D.126.“”是“直线:与直线:平行”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.函数区间上有()A.极大值为27,极小值为-5 B.无极大值,极小值为-5C.极大值为27,无极小值 D.无极大值,无极小值8.若“”是“”的充分不必要条件,则实数m的值为()A.1 B.C.或1 D.或9.已知椭圆的左、右焦点分别为、,点在椭圆上,若,则的面积为()A. B.C. D.10.已知双曲线(,)的左、右焦点分别为,,点A的坐标为,点P是双曲线在第二象限的部分上一点,且,点Q是线段的中点,且,Q关于直线PA对称,则双曲线的离心率为()A.3 B.2C. D.11.已知甲、乙、丙三名同学同时独立地解答一道导数试题,每人均有的概率解答正确,且三个人解答正确与否相互独立,在三人中至少有两人解答正确的条件下,甲解答不正确的概率A. B.C. D.12.焦点为的抛物线标准方程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的前项和.则数列的通项公式为_______.14.已知双曲线的左、右焦点分别为,右顶点为,为双曲线上一点,且,线段的垂直平分线恰好经过点,则双曲线的离心率为_______15.已知抛物线的焦点为,定点,若直线与抛物线相交于、两点(点在、中间),且与抛物线的准线交于点,若,则的长为______.16.曲线在点处的切线方程为_____________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等比数列的公比,且,的等差中项为,.(1)求数列的通项公式;(2)设,求数列的前项和.18.(12分)求满足下列条件的圆锥曲线方程的标准方程.(1)经过点,两点的椭圆;(2)与双曲线-=1有相同的渐近线且经过点的双曲线.19.(12分)已知直线l的斜率为-2,且与两坐标轴的正半轴围成三角形的面积等于1.圆C的圆心在第四象限,直线l经过圆心,圆C被x轴截得的弦长为4.若直线x-2y-1=0与圆C相切,求圆C的方程20.(12分)已知椭圆的标准方程为:,若右焦点为且离心率为(1)求椭圆的方程;(2)设,是上的两点,直线与曲线相切且,,三点共线,求线段的长21.(12分)已知等差数列前n项和为,,,若对任意的正整数n成立,求实数的取值范围.22.(10分)在平面直角坐标系中,已知直线:(t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为(1)求曲线C的直角坐标方程;(2)设点M的直角坐标为,直线l与曲线C的交点为A,B,求的值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据求出c,进而得到函数的单调性,然后根据极小值的定义判断答案.【详解】由题意,,则,所以或.若c=2,则,时,,单调递增,时,,单调递减,时,,单调递增.函数在处有极小值,满足题意;若c=6,则,函数R上单调递增,不合题意.综上:c=2.故选:A.2、A【解析】因为,所以曲线在点(1,0)处的切线的斜率为,所以切线方程为,即,选A3、D【解析】依题意,不妨设点A的坐标为,在中,由余弦定理得,再根据离心率公式计算即可.【详解】设椭圆的焦距为,则椭圆的左焦点的坐标为,右焦点的坐标为,依题意,不妨设点A的坐标为,在中,由余弦定理得:,,,,解得.故选:D.【点睛】本题考查椭圆几何性质,在中,利用余弦定理求得是关键,属于中档题.4、A【解析】将直线方程变形得,再根据方程即可得答案.【详解】解:由得到:,∴直线恒过定点故选:A5、B【解析】根据椭圆的定义可得:,所以的周长等于【详解】因为,,所以,故的周长为故选:B6、C【解析】根据两直线平行求得的值,由此确定充分、必要条件.【详解】由于,所以,当时,两直线重合,不符合题意,所以.所以“”是“直线:与直线:平行”的充要条件.故选:C7、B【解析】求出得出的单调区间,从而可得答案.【详解】当时,,单调递减.当时,,单调递增.所以当时,取得极小值,极小值为,无极大值.故选:B8、B【解析】利用定义法进行判断.【详解】把代入,得:,解得:或.当时,可化为:,解得:,此时“”是“”的充要条件,应舍去;当时,可化为:,解得:或,此时“”是“”的充分不必要条件.故.故选:B9、B【解析】求出,可知为等腰三角形,取的中点,可得出,利用勾股定理求得,利用三角形的面积公式可求得结果.【详解】在椭圆中,,,则,所以,,由椭圆的定义可得,取的中点,因为,则,由勾股定理可得,所以,.故选:B.10、C【解析】由角平分线的性质可得,结合已知条件即可求双曲线的离心率.【详解】由题设,易知:,由知:,即,整理得:.故选:C11、C【解析】记“三人中至少有两人解答正确”为事件;“甲解答不正确”为事件,利用二项分布的知识计算出,再计算出,结合条件概率公式求得结果.【详解】记“三人中至少有两人解答正确”为事件;“甲解答不正确”为事件则;本题正确选项:【点睛】本题考查条件概率的求解问题,涉及到利用二项分布公式求解概率的问题.12、D【解析】设抛物线的方程为,根据题意,得到,即可求解.【详解】由题意,设抛物线的方程为,因为抛物线的焦点为,可得,解得,所以抛物线的方程为.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据公式求解即可.【详解】解:当时,当时,因为也适合此等式,所以.故答案为:14、【解析】在中求出,再在中求出,即可得到的齐次式,化简即可求出离心率【详解】设双曲线:,,不妨设为双曲线右支上一点因为线段的垂直平分线恰好经过点,且,所以,在中,,所以,,在中,,所以,,因此,,化简得,,即,而,解得故答案为:15、【解析】分别过点、作、垂直于抛物线的准线于、,则,求出直线的方程,可求得抛物线的焦点的坐标,可得出抛物线的标准方程,再将直线的方程与抛物线的方程联立,求出点的纵坐标,利用抛物线的定义可求得线段的长.【详解】如图,分别过点、作、垂直于抛物线的准线于、,则,由得,所以,,又,所以,直线的方程为,所以,,则,则抛物线的方程为,设点的纵坐标为,由,得或,因为点在、之间,则,所以,.故答案为:.16、【解析】首先判定点在曲线上,然后利用导数的几何意义求得答案.【详解】由题意可知点在曲线上,而,故曲线在点处的切线斜率为,所以切线方程:,即,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)将题目的条件写成的形式并求解,写出等比等比数列通项公式;(2)利用错位相减法求和.小问1详解】由题意可得,,∴,∵,∴,∴数列的通项公式为.【小问2详解】,∴①,②,①-②可得,∴.18、(1);(2)【解析】(1)由题意可得,,从而可求出椭圆的标准方程,(2)由题意设双曲线的共渐近线方程为,再将的坐标代入方程可求出的值,从而可求出双曲线方程【小问1详解】因为,所以P、Q分别是椭圆长轴和短轴上的端点,且椭圆的焦点在x轴上,所以,所以椭圆的标准方程为.【小问2详解】设与双曲线共渐近线的方程为,代入点,解得m=2,所以双曲线的标准方程为19、【解析】先根据题意设直线方程,由条件求出直线的方程,再根据条件列出等量关系,求出圆心和半径,进而求得答案.【详解】解:设直线l的方程为y=-2x+b(b>0),它与两坐标轴的正半轴的交点依次为,,因为直线l与两坐标轴的正半轴所围成的三角形的面积等于1,所以,解得b=2,所以直线l的方程是,即由题意,可设圆C的圆心为,半径为r,又因为圆C被x轴截得的弦长等于4,所以①,由于直线与圆相切,所以圆心C到直线的距离②,所以①②联立得:,解得:或,又圆心在第四象限,所以,则圆心,,所以圆C方程是.20、(1);(2).【解析】(1)根据椭圆的焦点、离心率求椭圆参数,写出椭圆方程即可.(2)由(1)知曲线为,讨论直线的存在性,设直线方程联立椭圆方程并应用韦达定理求弦长即可.【详解】(1)由题意,椭圆半焦距且,则,又,∴椭圆方程为;(2)由(1)得,曲线为当直线的斜率不存在时,直线,不合题意:当直线的斜率存在时,设,又,,三点共线,可设直线,即,由直线与曲线相切可得,解得,联立,得,则,,∴.21、【解析】设等差数列的公差为,根据题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论