茂名市重点中学2026届数学高一上期末复习检测试题含解析_第1页
茂名市重点中学2026届数学高一上期末复习检测试题含解析_第2页
茂名市重点中学2026届数学高一上期末复习检测试题含解析_第3页
茂名市重点中学2026届数学高一上期末复习检测试题含解析_第4页
茂名市重点中学2026届数学高一上期末复习检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

茂名市重点中学2026届数学高一上期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数满足:,已知函数与的图象共有4个交点,交点坐标分别为,,,,则:A. B.C. D.2.已知函数是幂函数,且在上是减函数,则实数m的值是()A或2 B.2C. D.13.已知函数,则函数在上单调递增,是恒成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件4.化简的结果是()A. B.1C. D.25.将函数图象向左平移个单位,所得函数图象的一条对称轴的方程是A. B.C. D.6.已知函数的图像如图所示,则函数与在同一坐标系中的图像是()A. B.C. D.7.如图,在平面内放置两个相同的直角三角板,其中,且三点共线,则下列结论不成立的是A. B.C.与共线 D.8.“两个三角形相似”是“两个三角形三边成比例”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件9.在平面直角坐标系中,设角的终边上任意一点的坐标是,它与原点的距离是,规定:比值叫做的正余混弦,记作.若,则()A. B.C. D.10.已知,,则“使得”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.设a为实数,若关于x的方程有实数解,则a的取值范围是___________.12.有关数据显示,2015年我国快递行业产生的包装垃圾约为400万吨.有专家预测,如果不采取措施,快递行业产生的包装垃圾年平均增长率将达到50%.由此可知,如果不采取有效措施,则从___________年(填年份)开始,快递行业产生的包装垃圾超过4000万吨.(参考数据:,)13.定义域为上的函数满足,且当时,,若,则a的取值范围是______14.用二分法求方程x2=2的正实根的近似解(精确度0.001)时,如果我们选取初始区间是[1.4,1.5],则要达到精确度至少需要计算的次数是______________15.已知幂函数过点,若,则________16.如图,矩形的三个顶点分别在函数,,的图像上,且矩形的边分别平行于两坐标轴.若点的纵坐标为2,则点的坐标为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.2020年春节前后,一场突如其来的新冠肺炎疫情在武汉出现并很快地传染开来(已有证据表明2019年10月、11月国外已经存在新冠肺炎病毒),对人类生命形成巨大危害.在中共中央、国务院强有力的组织领导下,全国人民万众一心抗击、防控新冠肺炎,疫情早在3月底已经得到了非常好的控制(累计病亡人数人),然而国外因国家体制、思想观念的不同,防控不力,新冠肺炎疫情越来越严重.疫情期间造成医用防护用品短缺,某厂家生产医用防护用品需投入年固定成本为万元,每生产万件,需另投入成本为.当年产量不足万件时,(万元);当年产量不小于万件时,(万元).通过市场分析,若每件售价为元时,该厂年内生产的商品能全部售完.(利润销售收入总成本)(1)写出年利润(万元)关于年产量(万件)的函数解析式;(2)年产量为多少万件时,该厂在这一商品的生产中所获利润最大?并求出利润的最大值18.已知函数.(1)求的单调区间;(2)若,且,求值.19.若二次函数满足,且.(1)求的解析式;(2)若在区间上,不等式恒成立,求实数的取值范围.20.已知函数,.求:(1)求函数在上的单调递减区间(2)画出函数在上的图象;21.已知,Ⅰ求的值;Ⅱ求的值;Ⅲ若且,求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】函数的图象和的图象都关于(0,2)对称,从而可知4个交点两两关于点(0,2)对称,即可求出的值【详解】因为函数满足:,所以的图象关于(0,2)对称,函数,由于函数的图象关于(0,0)对称,故的图象也关于(0,2)对称,故.故答案为C.【点睛】若函数满足,则函数的图象关于点对称2、C【解析】由函数是幂函数可得,解得或2,再讨论单调性即可得出.【详解】是幂函数,,解得或2,当时,在上是减函数,符合题意,当时,在上是增函数,不符合题意,.故选:C.3、A【解析】根据充分、必要条件的定义证明即可.【详解】因为函数在上单调递增,则,恒成立,即恒成立,,即.所以“”是“”的充分不必要条件.故选:A.4、B【解析】利用三角函数的诱导公式化简求解即可.【详解】原式.故选:B5、C【解析】将函数图象向左平移个单位得到,令,当时得对称轴为考点:三角函数性质6、B【解析】由函数的图象可得,函数的图象过点,分别代入函数式,,解得,函数与都是增函数,只有选项符合题意,故选B.【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.7、D【解析】设BC=DE=m,∵∠A=30°,且B,C,D三点共线,则CD═AB=m,AC=EC=2m,∴∠ACB=∠CED=60°,∠ACE=90°,,故A、B、C成立;而,,即不成立,故选D.8、C【解析】根据相似三角形性质,结合充分条件、必要条件的判定方法,即可求解.【详解】根据相似三角形的性质得,由“两个三角形相似”可得到“两个三角形三边成比例”,即充分性成立;反之:由“两个三角形三边成比例”可得到“两个三角形相似”,即必要性成立,所以“两个三角形相似”是“两个三角形三边成比例”的充分必要条件.故选:C.9、D【解析】由可得出,根据题意得出,结合可得出关于和的方程组,解出这两个量,然后利用商数关系可求出的值.【详解】,则,由正余混弦的定义可得.则有,解得,因此,.故选:D.【点睛】本题考查三角函数的新定义,涉及同角三角函数基本关系的应用,根据题意建立方程组求解和的值是解题的关键,考查运算求解能力,属于基础题.10、C【解析】依据子集的定义进行判断即可解决二者间的逻辑关系.【详解】若使得,则有成立;若,则有使得成立.则“使得”是“”的充要条件故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】令,将原问题转化为方程有正根,利用判别式及韦达定理列出不等式组求解即可得答案.【详解】解:方程可化,令,则,所以原问题转化为方程有正根,设两根分别为,则,解得,所以的取值范围是,故答案为:.12、2021【解析】根据条件列指数函数,再解指数不等式得结果.【详解】设快递行业产生的包装垃圾为万吨,表示从2015年开始增加的年份数,由题意可得,,得,两边取对数可得,∴,得,解得,∴从2015+6=2021年开始,快递行业产生的包装垃圾超过4000万吨.故答案为:202113、【解析】根据,可得函数图象关于直线对称,当时,,可设,根据,即可求解;【详解】解:,的函数图象关于直线对称,函数关于y轴对称,当时,,那么时,,可得,由,得解得:;故答案为.【点睛】本题考查了函数的性质的应用及不等式的求解,属于中档题.14、7【解析】设至少需要计算n次,则n满足,即,由于,故要达到精确度要求至少需要计算7次15、##【解析】先由已知条件求出的值,再由可求出的值【详解】因幂函数过点,所以,得,所以,因为,所以,得,故答案为:16、【解析】先利用已知求出的值,再求点D的坐标.【详解】由图像可知,点在函数的图像上,所以,即.因为点在函数的图像上,所以,.因为点在函数的图像上,所以.又因为,,所以点的坐标为.故答案为【点睛】本题主要考查指数、对数和幂函数的图像和性质,意在考查学生对这些知识的理解掌握水平.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)年产量为万件时,该厂在这一商品的生产中所获利润最大,利润的最大值为万元【解析】(1)由利润销售收入总成本写出分段函数的解析式即可;(2)利用配方法和基本不等式分别求出各段的最大值,再取两个中最大的即可.【详解】(1)当,时,当,时,(2)当,时,,当时,取得最大值(万元)当,时,当且仅当,即时等号成立即时,取得最大值万元综上,所以即生产量为万件时,该厂在这一商品的生产中所获利润最大为万元18、(1)的单调递增区间为,单调递减区间(2)【解析】(1)化简解析式,根据三角函数单调区间的求法,求得的单调区间.(2)求得、,结合两角差的正弦公式求得.【小问1详解】.由,得,的单调递增区间为,同理可得的单调递减区间.【小问2详解】,.,...19、(1);(2).【解析】(1)由条件列关于a,b,c的方程,解方程求a,b,c,由此可得函数的解析式,(2)由已知可得在上恒成立,即,由此可求m的范围.【详解】解:(1)由得,.∴又∵,∴即∴∴∴(2)不等式等价于即∵函数在上的最大值为∴.20、(1)(2)图象见解析【解析】(1)由,得的范围,即可得函数在,上的单调递减区间(2)根据用五点法作函数的图象的步骤和方法,作出函数在,上的图象【小问1详解】因为,令,,解得,,令得:函数在区间,上的单调递减区间为:,【小问2详解】,列表如下:01001描点连线画出函数在一个周期上,的图象如图所示:21、(Ⅰ);(Ⅱ);(Ⅲ).【解析】Ⅰ根据同角的三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论