2026届陕西省西安电子科技大学附属中学高二数学第一学期期末检测试题含解析_第1页
2026届陕西省西安电子科技大学附属中学高二数学第一学期期末检测试题含解析_第2页
2026届陕西省西安电子科技大学附属中学高二数学第一学期期末检测试题含解析_第3页
2026届陕西省西安电子科技大学附属中学高二数学第一学期期末检测试题含解析_第4页
2026届陕西省西安电子科技大学附属中学高二数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届陕西省西安电子科技大学附属中学高二数学第一学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的定义域为开区间,导函数在内的图像如图所示,则函数在开区间内的极大值点有()A.1个 B.2个C.3个 D.4个2.若,则下列不等式①;②;③;④中,正确的不等式有()A.0个 B.1个C.2个 D.3个3.已知P是直线上的动点,PA,PB是圆的切线,A,B为切点,C为圆心,那么四边形PACB的面积的最小值是()A2 B.C.3 D.4.已知直线的一个方向向量为,则直线的倾斜角为()A. B.C. D.5.在正三棱锥S−ABC中,M、N分别是棱SC、BC的中点,且,若侧棱,则正三棱锥S−ABC外接球的表面积是()A. B.C. D.6.若随机事件满足,,,则事件与的关系是()A.互斥 B.相互独立C.互为对立 D.互斥且独立7.双曲线(,)的一条渐近线的倾斜角为,则离心率为()A. B.C.2 D.48.双曲线的左焦点到其渐近线的距离是()A. B.C. D.9.抛物线的准线方程为()A. B.C. D.10.过点且平行于直线的直线方程为()A. B.C. D.11.某公司要建造一个长方体状的无盖箱子,其容积为48m3,高为3m,如果箱底每1m2的造价为15元,箱壁每1m2造价为12元,则箱子的最低总造价为()A.72元 B.300元C.512元 D.816元12.的展开式中的系数为,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,,若,,使得,则实数a的取值范围是______14.若数列满足,则称为“追梦数列”.已知数列为“追梦数列”,且,则数列的通项公式__________.15.执行如图所示的程序框图,则输出的结果________16.如图的形状出现存南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”.“三角垛”的最一上层有1个球,第二层有3个球,第三层有6个球……,设从上至下各层球数构成一个数列则___________.(填数字)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左,右焦点分别为,三个顶点(左、右顶点和上顶点)构成的三角形的面积为,离心率为方程的根.(1)求椭圆方程;(2)椭圆的一个内接平行四边形的一组对边分别过点和,如图,若这个平行四边形面积为,求平行四边形的四个顶点的纵坐标的乘积.18.(12分)已知的内角A,B,C所对的边分别为a,b,c,且(1)求;(2)若,求的面积的最大值19.(12分)如图所示,在三棱柱中,平面,,,,点,分别在棱和棱上,且,,点为棱的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.20.(12分)已知函数.(1)当时,求的最大值和最小值;(2)说明的图象由函数的图象经过怎样的变换得到?21.(12分)蒙古包是蒙古族牧民居住的一种房子,建造和搬迁都很方便,适于游牧生活.其结构如图所示,上部分是侧棱长为3的正六棱锥,下部分是高为1的正六棱柱,分别为正六棱柱上底面与下底面的中心.(1)若长为,把蒙古包的体积表示为的函数;(2)求蒙古包体积的最大值.22.(10分)如图所示,在四棱锥中,BC//平面PAD,,E是PD的中点(1)求证:CE//平面PAB;(2)若M是线段CE上一动点,则线段AD上是否存在点,使MN//平面PAB?说明理由

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用极值点的定义求解.【详解】由导函数的图象知:函数在内,与x轴有四个交点:第一个点处导数左正右负,第二个点处导数左负右正,第三个点处导数左正右正,第四个点处导数左正右负,所以函数在开区间内的极大值点有2个,故选:B2、C【解析】由条件,可得,利用不等式的性质和基本不等式可判断①、②、③、④中不等式的正误,得出答案.【详解】因为,所以.因此,且,且②、③不正确.所以,所以①正确,由得、均为正数,所以,(由条件,所以等号不成立),所以④正确.故选:C.3、D【解析】由圆C的标准方程可得圆心为(1,1),半径为1,根据切线的性质可得四边形PACB面积等于,,故求解最小时即可确定四边形PACB面积的最小值.【详解】圆C:x2+y2-2x-2y+1=0即,表示以C(1,1)为圆心,以1为半径的圆,由于四边形PACB面积等于2×××=,而,故当最小时,四边形PACB面积最小,又的最小值等于圆心C到直线l:的距离d,而,故四边形PACB面积的最小值为,故选:D4、A【解析】由直线斜率与方向向量的关系算出斜率,然后可得.【详解】记直线的倾斜角为,由题知,又,所以,即.故选:A5、A【解析】由题意推出平面,即平面,,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的体积【详解】∵,分别为棱,的中点,∴,∵三棱锥为正棱锥,作平面,所以是底面正三角的中心,连接并延长交与点,∵底面是正三角形,,平面∴,,∵,平面,平面,∴平面,∵平面,∴,∴,又∵,而,且,平面,∴平面,∴平面,∴,因为S−ABC是正三棱锥。所以,以,,为从同一定点出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的体对角线就是球的直径,,所以.故选:A.6、B【解析】利用独立事件,互斥事件和对立事件的定义判断即可【详解】解:因为,,又因为,所以有,所以事件与相互独立,不互斥也不对立故选:B.7、C【解析】根据双曲线方程写出渐近线方程,得出,进而可求出双曲线的离心率.【详解】因为双曲线的渐近线方程为,又其中一条渐近线的倾斜角为,所以,则,所以该双曲线离心率为.故选:C.8、A【解析】求出双曲线焦点坐标与渐近线方程,利用点到直线的距离公式可求得结果.【详解】在双曲线中,,,,所以,该双曲线的左焦点坐标为,渐近线方程为,即,因,该双曲线的左焦点到渐近线的距离为.故选:A9、A【解析】将抛物线的方程化成标准形式,即可得到答案;【详解】抛物线的方程化成标准形式,准线方程为,故选:A.10、A【解析】设直线的方程为,代入点的坐标即得解.【详解】解:设直线的方程为,把点坐标代入直线方程得.所以所求的直线方程为.故选:A11、D【解析】设这个箱子的箱底的长为xm,则宽为m,设箱子总造价为f(x)元,则f(x)=72(x)+240,由此利用均值不等式能求出箱子的最低总造价【详解】设这个箱子的箱底的长为xm,则宽为m,设箱子总造价为f(x)元,∴f(x)=15×16+12×3(2x)=72(x)+240≥144240=816,当且仅当x,即x=4时,f(x)取最小值816元故选:D12、B【解析】根据二项式展开式的通项,先求得x的指数为1时r的值,再求得a的值.【详解】由题意得:二项式展开式的通项为:,令,则,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求出两函数在上的值域,再由已知条件可得,且,列不等式组可求得结果【详解】由,得,当时,,所以在上单调递减,所以,即,由,得,当时,,所以在上单调递增,所以,即,因为,,使得,所以,解得,故答案为:14、##【解析】根据题意,由“追梦数列”的定义可得“追梦数列”是公比为的等比数列,进而可得若数列为“追梦数列”,则为公比为3的等比数列,进而由等比数列的通项公式可得答案【详解】根据题意,“追梦数列”满足,即,则数列是公比为的等比数列.若数列为“追梦数列”,则.故答案为:.15、132【解析】根据程序框图模拟程序运行,确定变量值的变化可得结论【详解】程序运行时,变量值变化如下:,判断循环条件,满足,,;判断循环条件,满足,,;判断循环条件,不满足,输出故答案为:13216、【解析】根据题中给出的图形,结合题意找到各层球的数列与层数的关系,得到,即可得解【详解】解:由题意可知,,,,,,故,所以,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由椭圆离心率的性质及一元二次方程的根可得,再由椭圆参数关系、已知三角形面积求椭圆参数,即可得椭圆方程.(2)设直线,联立椭圆方程并结合韦达定理求,进而可得,再根据求参数t,可得,结合椭圆的对称性求,即可求结果.【小问1详解】由的根为,所以椭圆的离心率,依题意,,解得,即椭圆的方程为;【小问2详解】设直线,联立,消去得,由韦达定理得:,所以,所以,所以椭圆的内接平行四边形面积.所以,解得或(舍去),所以,根据椭圆的对称性知:,故平行四边形的四个顶点的纵坐标的乘积为.18、(1)(2)【解析】(1)由正弦定理将边化为角,结合三角函数的两角和的正弦公式,可求得答案;(2)由余弦定理结合基本不等式可求得,再利用三角形面积公式求得答案.【小问1详解】由正弦定理及,得,∵∴,∵,∴【小问2详解】由余弦定理,∴,即,当且仅当时取等号,∴,当且仅当时等号成立,∴的面积的最大值为19、(1)证明见解析(2)【解析】(1)构建空间直角坐标系,由已知确定相关点坐标,进而求的方向向量、面的法向量,并应用坐标计算空间向量的数量积,即可证结论.(2)求的方向向量,结合(1)中面的法向量,应用空间向量夹角的坐标表示求直线与平面所成角的正弦值.【小问1详解】以为原点,以,,为轴、轴、轴的正方向建立空间直角坐标系,如图所示,可得:,,,,,,,.∴,,,设为面的法向量,则,令得,∴,即,∴平面;【小问2详解】由(1)知:,为面的一个法向量,设与平面所成角为,则,∴直线与平面所成角的正弦值为.20、(1)2,;(2)答案见解析.【解析】(1)根据,求出范围,再根据正弦函数的图像即可求值域;(2)根据正弦函数图像变换对解析式的影响即可求解.【小问1详解】当时,有,可得,故,则的最大值为2,最小值为.【小问2详解】先将函数的图象向右平移个单位长度,得到函数的图象;然后把所得图象上各点的纵坐标不变,横坐标变为原来的2倍,得到函数的图象;最后把所得图象上各点的横坐标不变,纵坐标伸长为原来的2倍,这时得到的就是函数的图象.21、(1),其中.(2).【解析】(1)利用柱体和椎体体积公式求得的函数表达式.(2)利用导数求得体积的最大值.【小问1详解】正六边形的边长(0),底面积,于是,其中.【小问2详解】,,当时,单调递增,当时,单调递减,所以当时,.综上,当时,蒙古包体积最大,且最大体积为.22、(1)证明见解析;(2)存在,理由见解析.【解析】(1)为中点,连接,由中位线、线面平行的性质可得四边形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论