版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山西省太原市第十二中学数学高二上期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆与椭圆,则下列结论正确的是()A.长轴长相等 B.短轴长相等C.焦距相等 D.离心率相等2.曲线在点处的切线过点,则实数()A. B.0C.1 D.23.已知函数f(x)=x(lnx-ax)有两个极值点,则实数a的取值范围是()A.(-∞,0) B.C.(0,1) D.(0,+∞)4.某次数学考试试卷评阅采用“双评+仲裁”的方式,规则如下:两位老师独立评分,称为一评和二评,当两者所评分数之差的绝对值小于或等于分时,取两者平均分为该题得分;当两者所评分数之差的绝对值大于分时,再由第三位老师评分,称之为仲裁,取仲裁分数和一、二评中与之接近的分数的平均分为该题得分.如图所示,当,,时,则()A. B.C.或 D.5.已知等差数列满足,,数列满足,记数列的前n项和为,若对于任意的,,不等式恒成立,则实数t的取值范围为()A. B.C. D.6.已知双曲线的左、右焦点分别为,点A在双曲线上,且轴,若则双曲线的离心率等于()A. B.C.2 D.37.己知F为抛物线的焦点,过F作两条互相垂直的直线,,直线与C交于A、B两点,直线与C交于D、E两点,则的最小值为()A.24 B.22C.20 D.168.下列说法正确的个数有()(ⅰ)命题“若,则”的否命题为:“若,则”;(ⅱ)“,”的否定为“,使得”;(ⅲ)命题“若,则有实根”为真命题;(ⅳ)命题“若,则”的否命题为真命题;A.1个 B.2个C.3个 D.4个9.已知数列为等差数列,且成等比数列,则的前6项的和为A.15 B.C.6 D.310.若函数在定义域上单调递增,则实数的取值范围为()A. B.C. D.11.已知数列的通项公式为,则“”是“数列为单调递增数列”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件12.设双曲线的左、右顶点分别为、,点在双曲线上第一象限内的点,若的三个内角分别为、、且,则双曲线的渐近线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与9相关的设计.例如,北京天坛圆丘的底面由扇环形的石板铺成(如图),最高一层是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈,则前9圈的石板总数是__________14.已知数列的前项和为,且满足,,则___________.15.若函数在x=1处的切线与直线y=kx平行,则实数k=___________.16.设,若,则S=________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知矩形ABCD所在平面外一点P,平面ABCD,E、F分别是AB、PC的中点求证:(1)共面;(2)求证:18.(12分)已知各项均为正数的等比数列的前n项和为,且,(1)求数列的通项公式;(2)设,求数列的前n项和19.(12分)请分别确定满足下列条件的直线方程(1)过点(1,0)且与直线x﹣2y﹣2=0垂直直线方程是(2)求与直线3x-4y+7=0平行,且在两坐标轴上截距之和为1的直线l的方程.20.(12分)如图,在四棱锥中,平面,是等边三角形.(1)证明:平面平面.(2)求点到平面的距离.21.(12分)在平面直角坐标系xOy中,椭圆C:(a>b>0)的左、右焦点分别为,其离心率,且椭圆C经过点.(1)求椭圆C的标准方程;(2)过点M作两条不同的直线与椭圆C分别交于点A,B(均异于点M).若∠AMB的角平分线与y轴平行,试探究直线AB的斜率是否为定值?若是,请给予证明;若不是,请说明理由.22.(10分)如图,在四棱锥中,四边形为平行四边形,且,,三角形为等腰直角三角形,且,.(1)若点为棱的中点,证明:平面平面;(2)若平面平面,点为棱的中点,求直线与平面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用,可得且,即可得出结论【详解】∵,且,椭圆与椭圆的关系是有相等的焦距故选:C2、A【解析】由导数的几何意义得切线方程为,进而得.【详解】解:因为,,,所以,切线方程为,因为切线过点,所以,解得故选:A3、B【解析】函数f(x)=x(lnx﹣ax),则f′(x)=lnx﹣ax+x(﹣a)=lnx﹣2ax+1,令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,函数f(x)=x(lnx﹣ax)有两个极值点,等价于f′(x)=lnx﹣2ax+1有两个零点,等价于函数y=lnx与y=2ax﹣1的图象有两个交点,在同一个坐标系中作出它们的图象(如图)当a=时,直线y=2ax﹣1与y=lnx的图象相切,由图可知,当0<a<时,y=lnx与y=2ax﹣1的图象有两个交点则实数a的取值范围是(0,)故选B4、B【解析】按照框图考虑成立和不成立即可求解.【详解】因为,,,所以输入,当成立时,,即,解得,,满足条件;当不成立时,,即,解得,,不满足条件;故.故选:B.5、B【解析】由等差数列基本量法求出通项公式,用裂项相消法求得,求出的最大值,然后利用关于的不等式是一次不等式列出满足的不等关系求得其范围【详解】设等差数列公差为,则由已知得,解得,∴,,∴,易知数列是递增数列,且,∴若对于任意的,,不等式恒成立,即,又,∴,解得或故选:B【点睛】本题考查求等差数列的通项公式,考查裂项相消法求数列的和,考查不等式恒成立问题,解题关键是掌握不等式恒成立问题的转化与化归思想,不等式恒成立首先转化为求数列的单调性与最值,其次转化为一次不等式恒成立6、B【解析】由双曲线定义结合通径公式、化简得出,最后得出离心率.【详解】,,,解得故选:B7、A【解析】由抛物线的性质:过焦点的弦长公式计算可得.【详解】设直线,的斜率分别为,由抛物线的性质可得,,所以,又因为,所以,所以,故选:A.8、B【解析】根据四种命题的结构特征可判断(ⅰ)(ⅳ)的正误,根据全称命题的否定形式可判断(ⅱ)的正误,根据判别式的正误可判断(ⅲ)的正误.【详解】命题“若,则”的否命题”为“若,则”,故(ⅰ)错误.“,”的否定为“,使得”,故(ⅱ)正确,当时,,故有实根,故(ⅲ)正确,“若,则”的否命题为“若,则”,取,则,故命题若,则为假命题,故(ⅳ)错误.故选:B9、C【解析】利用成等比数列,得到方程2a1+5d=2,将其整体代入{an}前6项的和公式中即可求出结果【详解】∵数列为等差数列,且成等比数列,∴,1,成等差数列,∴2,∴2=a1+a1+5d,解得2a1+5d=2,∴{an}前6项的和为2a1+5d)=故选C【点睛】本题考查等差数列前n项和求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用10、D【解析】函数在定义域上单调递增等价于在上恒成立,即在上恒成立,然后易得,最后求出范围即可.【详解】函数的定义域为,,在定义域上单调递增等价于在上恒成立,即在上恒成立,即在上恒成立,分离参数得,所以,即.【点睛】方法点睛:已知函数的单调性求参数的取值范围的通解:若在区间上单调递增,则在区间上恒成立;若在区间上单调递减,则在区间上恒成立;然后再利用分离参数求得参数的取值范围即可.11、A【解析】根据充分条件和必要条件的定义,结合数列的单调性判断【详解】根据题意,已知数列的通项公式为,若数列为单调递增数列,则有(),所以,因为,所以,所以当时,数列为单调递增数列,而当数列为单调递增数列时,不一定成立,所以“”是“数列为单调递增数列”的充分而不必要条件,故选:A12、B【解析】设点,其中,,求得,且有,,利用两角和的正切公式可求得的值,进而可求得的值,即可得出该双曲线的渐近线的方程.【详解】易知点、,设点,其中,,且,,且,,,所以,,,因为,所以,,则,因此,该双曲线渐近线方程为.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、405【解析】前9圈的石板数依次组成一个首项为9,公差为9的等差数列,14、【解析】当时,,可得,可得数列隔项成等比数列,即所以数列的奇数项和偶数项分别是等比数列,分别求和,即可得解.【详解】因为,,所以,当时,,∴,所以数列的奇数项和偶数项分别是等比数列,所以.故答案为:.15、2【解析】由题可求函数的导数,再利用导数的几何意义即求.【详解】∵,∴,,又函数在x=1处的切线与直线y=kx平行,∴.故答案为:2.16、1007【解析】可证f(x)+f(1﹣x)=1,由倒序相加法可得所求为1007对的组合,即1007个1,可得答案【详解】解:∵函数f(x),∴f(x)+f(1﹣x)1故可得S=f()+f()…+f()=1007×1=1007,故答案为:1007点睛】本题考查倒序相加法求和,推断出f(x)+f(1﹣x)=1是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2)详见解析.【解析】(1)以为原点,为轴,为轴,为轴,建立空间直角坐标系,设,,,求出,,,,0,,,,,从而,由此能证明共面(2)求出,0,,,,,由,能证明【详解】证明:如图,以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,设,,,则0,,0,,2b,,2b,,0,,为AB的中点,F为PC的中点,0,,b,,b,,,2b,,共面.(2),【点睛】本题考查三个向量共面的证明,考查两直线垂直的证明,是基础题18、(1)(2)【解析】(1)由等比数列的前项和公式,等比数列的基本量运算列方程组解得和公比后可得通项公式;(2)用错位相减法求得和【小问1详解】设数列的公比为q,由,,得,解之得所以;【小问2详解】,又,得,,两式作差,得,所以19、(1)2x+y﹣2=0(2)3x-4y-12=0【解析】(1)设与直线x﹣2y﹣2=0垂直的直线方程为2x+y+m=0,把(1,0)代入2x+y+m=0,解得m即得解(2)方法一:由题意知:可设l的方程为,求出l在x轴,y轴上的截距,由截距之和为1,解出m,代回求出直线方程;方法二:设直线方程为,由题意得,解出a,b即可.【小问1详解】设与直线x﹣2y﹣2=0垂直的直线方程为2x+y+m=0,把(1,0)代入2x+y+m=0,可得2+m=0,解得m=﹣2所求直线方程为:2x+y﹣2=0【小问2详解】方法一:由题意知:可设l的方程为,则l在x轴,y轴上的截距分别为.由知,.所以直线l的方程为:.方法二:显然直线在两坐标轴上截距不为0,则设直线方程为,由题意得解得所以直线l的方程为:.即.20、(1)证明见解析;(2).【解析】(1)根据等边三角形的性质、线面垂直的性质,结合面面垂直的判定定理进行证明即可;(2)利用余弦定理,结合三棱锥的等积性进行求解即可.【小问1详解】证明:设,因为是等边三角形,且,所以是的中点,则.又,所以,所以,即.又平面平面,所以.又,所以平面.因为平面,所以平面平面.【小问2详解】解:因为,所以.在中,,所以,则又平面,所以.如图,连接,则,所以.设点到平面的距离为,因为,所以,解得,即点到平面的距离为.21、(1)(2)是,证明见解析【解析】(1)根据离心率及椭圆上的点可求解;(2)根据题意分别设出直线MA、MB,与椭圆联立后得到相关点的坐标,再通过斜率公式计算即可证明.【小问1详解】由,得,所以a2=9b2①,又椭圆过点,则②,由①②解得a=6,b=2,所以椭圆的标准方程为【小问2详解】设直线MA的斜率为k,点,因为∠AMB的平分线与y轴平行,所以直线MA与MB的斜率互为相反数,则直线MB的斜率为-k.联立直线MA与椭圆方程,得整理,得,所以,同理可得,所以,又所以为定值.22、(1)证明见解析(2)【解析】(1)先证明,,进而证明平面,即可证明平面,从而证明平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026甘肃民族师范学院招聘82人备考题库完整答案详解
- 2026年农业气候韧性提升实务课
- 家电家居产品演示话术手册
- 财政系统预算培训课件
- 空调修理年终总结范文(3篇)
- 职业健康监护中的职业史采集技巧
- 职业健康促进的投资回报周期
- 职业健康促进与职业健康人才培养
- 职业健康与心理健康的整合干预策略
- 茂名2025年广东茂名市海洋综合执法支队滨海新区大队招聘4人笔试历年参考题库附带答案详解
- 一年级下册口算题卡大全(口算练习题50套直接打印版)
- 《智慧园区评价要求》
- 大中专高铁乘务专业英语教学课件
- 吉林大学《电磁场与电磁波》2021-2022学年期末试卷
- 鲜花 高清钢琴谱五线谱
- 安全生产标准化持续改进方案
- CJT511-2017 铸铁检查井盖
- 2024年高考语文考前专题训练:现代文阅读Ⅱ(散文)(解析版)
- 第六节暂准进出口货物课件
- 中医外科乳房疾病诊疗规范诊疗指南2023版
- 压实沥青混合料密度 表干法 自动计算
评论
0/150
提交评论