内蒙古五原县第一中学2026届高二上数学期末考试模拟试题含解析_第1页
内蒙古五原县第一中学2026届高二上数学期末考试模拟试题含解析_第2页
内蒙古五原县第一中学2026届高二上数学期末考试模拟试题含解析_第3页
内蒙古五原县第一中学2026届高二上数学期末考试模拟试题含解析_第4页
内蒙古五原县第一中学2026届高二上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古五原县第一中学2026届高二上数学期末考试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设为坐标原点,直线与抛物线C:交于,两点,若,则的焦点坐标为()A. B.C. D.2.下图是一个“双曲狭缝”模型,直杆沿着与它不平行也不相交的轴旋转时形成双曲面,双曲面的边缘为双曲线.已知该模型左、右两侧的两段曲线(曲线AB与曲线CD)所在的双曲线离心率为2,曲线AB与曲线CD中间最窄处间的距离为10cm,点A与点C,点B与点D均关于该双曲线的对称中心对称,且|AB|=30cm,则|AD|=()A.10cm B.20cmC.25cm D.30cm3.已知,,若,则实数的值为()A. B.C. D.24.椭圆:与双曲线:的离心率之积为2,则双曲线的渐近线方程为()A. B.C. D.5.某校初一有500名学生,为了培养学生良好的阅读习惯,学校要求他们从四大名著中选一本阅读,其中有200人选《三国演义》,125人选《水浒传》,125人选《西游记》,50人选《红楼梦》,若采用分层抽样的方法随机抽取40名学生分享他们的读后感,则选《西游记》的学生抽取的人数为()A.5 B.10C.12 D.156.“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.下列说法正确的是()A.空间中的任意三点可以确定一个平面B.四边相等的四边形一定是菱形C.两条相交直线可以确定一个平面D.正四棱柱的侧面都是正方形8.在数列中,,则等于A. B.C. D.9.将函数的图象向左平移个单位长度后,得到函数的图象,则()A. B.C. D.10.在中,角A,B,C所对的边分别为a,b,c,,则的形状为()A.正三角形 B.等腰直角三角形C.直角三角形 D.等腰三角形11.将数列中的各项依次按第一个括号1个数,第二个括号2个数,第三个括号4个数,第四个括号8个数,第五个括号16个数,…,进行排列,,,…,则以下结论中正确的是()A.第10个括号内的第一个数为1025 B.2021在第11个括号内C.前10个括号内一共有1025个数 D.第10个括号内的数字之和12.直线的倾斜角为()A.150° B.120°C.60° D.30°二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足:,,,则______14.已知数列,点在函数的图象上,则数列的前10项和是______15.双曲线离心率__________.16.古希腊数学家阿波罗尼斯发现:平面上到两定点A,B的距离之比为常数的点的轨迹是—个圆心在直线上的圆.该圆被称为阿氏圆,如图,在长方体中,,点E在棱上,,动点P满足,若点P在平面内运动,则点P对应的轨迹的面积是___________;F为的中点,则三棱锥体积的最小值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点,点为直线上的动点,过作直线的垂线,线段的中垂线与交于点.(1)求点的轨迹的方程;(2)若过点直线与曲线交于,两点,求与面积之和的最小值.(为坐标原点)18.(12分)已知椭圆与椭圆的焦点相同,且椭圆C过点(1)求椭圆C的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点A,B,且(O为坐标原点),若存在,求出该圆的方程;若不存在,说明理由19.(12分)p:函数在区间是递增的;q:方程有实数解.(1)若p为真命题,求m的取值范围;(2)若“”为真,“”为假,求m的取值范围.20.(12分)已知空间中三点,,,设,(1)求向量与向量的夹角的余弦值;(2)若与互相垂直,求实数的值21.(12分)(1)已知双曲线的离心率为2,求E的渐近线方程;(2)已知F是抛物线的焦点,是C上一点,且,求C的方程.22.(10分)在平面直角坐标系中,已知椭圆过点,且离心率.(1)求椭圆的方程;(2)直线的斜率为,直线l与椭圆交于两点,求的面积的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据题中所给的条件,结合抛物线的对称性,可知,从而可以确定出点的坐标,代入方程求得的值,进而求得其焦点坐标,得到结果.【详解】因为直线与抛物线交于两点,且,根据抛物线的对称性可以确定,所以,代入抛物线方程,求得,所以其焦点坐标为,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.2、B【解析】由离心率求出双曲线方程,由对称性设出点A,B,D坐标,求出坐标,求出答案.【详解】由题意得:,解得:,因为离心率,所以,,故双曲线方程为,设,则,,则,所以,则,解得:,故.故选:B3、D【解析】由,然后根据向量数量积的坐标运算即可求解.【详解】解:因,,所以,因为,所以,即,解得,故选:D.4、C【解析】先求出椭圆的离心率,再由题意得出双曲线的离心率,根据离心率即可求出渐近线斜率得解.【详解】椭圆:的离心率为,则,依题意,双曲线;的离心率为,而,于是得,解得:,所以双曲线的渐近线方程为故选:C5、B【解析】根据分层抽样的方法,列出方程,即可求解.【详解】根据分层抽样的方法,可得选《西游记》的学生抽取的人数为故选:B.6、B【解析】因但7、C【解析】根据立体几何相关知识对各选项进行判断即可.【详解】对于A,根据公理2及推论可知,不共线的三点确定一个平面,故A错误;对于B,在一个平面内,四边相等的四边形才一定是菱形,故B错误;对于C,根据公理2及推论可知,两条相交直线可以确定一个平面,故C正确;对于D,正四棱柱指上、下底面都是正方形且侧棱垂直于底面的棱柱,侧面可以是矩形,故D错误.故选:C8、D【解析】分析:已知逐一求解详解:已知逐一求解.故选D点睛:对于含有的数列,我们看作摆动数列,往往逐一列举出来观察前面有限项的规律9、A【解析】先化简函数表达式,然后再平移即可.【详解】函数的图象向左平移个单位长度后,得到的图象.故选:A10、C【解析】根据三角恒等变换结合正弦定理化简求得,即可判定三角形形状.【详解】解:由题,得,即,由正弦定理可得:,所以,所以三角形中,所以,又,所以,即三角形为直角三角形.故选:C.11、D【解析】由第10个括号内的第一个数为数列的第512项,最后一个数为数列的第1023项,进行分析求解即可【详解】由题意可得,第个括号内有个数,对于A,由题意得前9个括号内共有个数,所以第10个括号内的第一个数为数列的第512项,所以第10个括号内的第一个数为,所以A错误,对于C,前10个括号内共有个数,所以C错误,对于B,令,得,所以2021为数列的第1011项,由AC选项的分析可得2021在第10个括号内,所以B错误,对于D,因为第10个括号内的第一个数为,最后一个数为,所以第10个括号内的数字之和为,所以D正确,故选:D【点睛】关键点点睛:此题考查数列的综合应用,解题的关键是由题意确定出第10个括号内第一个数和最后一个数分别对应数列的哪一项,考查分析问题的能力,属于较难题12、D【解析】由斜率得倾斜角【详解】直线的斜率为,所以倾斜角为30°.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】运用累和法,结合等差数列前项和公式进行求解即可.【详解】因为,,所以当时,有,因此有:,即,当时,适合上式,所以,故答案为:.14、【解析】将点代入可得,从而得,再由裂项相消法可求解.【详解】由题意有,所以,所以数列的前10项和为:.故答案为:15、【解析】由已知得到a,b,再利用及即可得到答案.【详解】由已知,可得,所以,所以.故答案为:16、①.②.【解析】建立空间直角坐标系,根据,可得对应的轨迹方程;先求的面积,其是固定值,要使体积最小,只需求点到平面的距离的最小值即可.【详解】分别以为轴建系,设,而,,,,.由,有,化简得对应的轨迹方程为.所以点P对应的轨迹的面积是.易得的三个边即是边长为为的等边三角形,其面积为,,设平面的一个法向量为,则有,可取平面的一个法向量为,根据点的轨迹,可设,,所以点到平面的距离,所以故答案为:;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据抛物线的定义可得轨迹方程;(2)联立直线与抛物线方程,利用根与系数关系结合均值不等式可得最小值【小问1详解】如图所示,由已知得点为线段中垂线上一点,即,即动点到点的距离与点到直线的距离相等,所以点的轨迹为抛物线,其焦点为,准线为直线,所以点的轨迹方程为,【小问2详解】如图所示:设,点,,联立直线与抛物线方程,得,,,,,,所以,当且仅当,即,时取等号,此时,即,所以当直线直线,时取得最小值为.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式18、(1);(2)存在,.【解析】(1)与焦点相同可求出c,将代入方程结合a、b、c关系即可求a和b;(2)直线AB斜率存在时,设直线AB的方程为,联立AB方程与椭圆方程,得到根与系数的关系;由得,结合韦达定理得k与m的关系;再由圆与直线相切,即可求其半径;最后再验证AB斜率不存在时的情况即可.【小问1详解】,由题可知,解得点,所以椭圆的方程为;【小问2详解】设,设,代入,整理得,由得,即,由韦达定理化简得,即,设存在圆与直线相切,则,解得,所以圆的方程为,又若轴时,检验知满足条件,故存在圆心在原点的圆符合题意19、(1)(2)或【解析】(1)依题意在区间上恒成立,参变分离可得在区间上恒成立,再利用基本不等式计算可得;(2)首先求出命题为真时参数的取值范围,再根据“”为真,“”为假,即可得到真假,或假真,从而得到不等式组,解得即可;【小问1详解】解:为真命题,即函数在区间上是递增的∴在区间上恒成立,∴在区间上恒成立,∵,当且仅当时等号成立,∴的取值范围为.【小问2详解】解:为真命题,即方程有实数解∴即∴或∵“”为真,“”为假∴真假,或假真∴或,解得或,∴的取值范围为或;20、(1);(2)或.【解析】(1)坐标表示出、,利用向量夹角的坐标表示求夹角余弦值;(2)坐标表示出k+、k-2,利用向量垂直的坐标表示列方程求的值.【详解】由题设,=(1,1,0),=(-1,0,2)(1)cosθ=,所以和的夹角余弦值为.(2)k+=k(1,1,0)+(-1,0,2)=(k-1,k,2),k-2=(k+2,k,-4),又(k+)⊥(k-2),则(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k-10=0,解得k=-或2.21、(1);(2).【解析】(1)由可知,即可求出,故可得渐近线方程;(2)利用点在抛物线上及其抛物线的定义列方程求解即可.【详解】(1)∵E的离心率,∴,即,解得,故E的渐近线方程为.(2)∵是C上一点,∴①,由抛物线的定义可知②,两式联立可得,解得则C的方程为.22、(1);(2)2.【解析】(1)由离心率,得到,再由点在椭圆上,得到,联立求得,即可求得椭圆的方程.(2)设的方程为,联立方程组,根据根系数的关系和弦长公式,以及点到直线的距离公式,求得,结合基本不等式,即可求解.【详解】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论