版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届云南省马关县第二中学高一数学第一学期期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了得到函数的图象,只需将函数的图象()A.向右平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向左平移个单位长度2.若幂函数f(x)=xa图象过点(3,9),设,,t=-loga3,则m,n,t的大小关系是()A. B.C. D.3.如图,向量,,的起点与终点均在正方形网格的格点上,则向量用基底,表示为A. B.C. D.4.已知函数,若函数恰有两个零点,则实数的取值范围是A. B.C. D.5.已知集合则()A. B.C. D.6.已知是以为圆心的圆上的动点,且,则A. B.C. D.7.已知定义在R上的函数满足,且当]时,,则()A.B.C.D.8.已知,其中a,b为常数,若,则()A. B.C.10 D.29.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()A. B.C. D.10.简谐运动可用函数表示,则这个简谐运动的初相为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则___________.12.已知空间中两个点A(1,3,1),B(5,7,5),则|AB|=_____13.在△ABC中,点满足,过点的直线与,所在直线分别交于点,,若,,,则的最小值为___________.14.若函数过点,则的解集为___________.15.已知函数是定义在上的偶函数,且在区间上单调递减,若实数满足,则的取值范围是______16.已知函数是幂函数,且过点,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=为奇函数(1)求a的值;(2)判断函数f(x)的单调性,并加以证明18.已知函数是偶函数,且,.(1)当时,求函数的值域;(2)设,,求函数的最小值;(3)设,对于(2)中的,是否存在实数,使得函数在时有且只有一个零点?若存在,求出实数的取值范围;若不存在,请说明理由.19.已知函数(1)求函数的零点;(2)若实数满足,求的取值范围.20.在平面直角坐标系中,锐角的顶点是坐标原点O,始边为x轴的非负半轴,终边上有一点(1)求的值;(2)若,且,求角的值21.如图,已知点P是平行四边形ABCD所在平面外的一点,E,F分别是PA,BD上的点且PE∶EA=BF∶FD,求证:EF∥平面PBC.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据诱导公式可得,结合三角函数的平移变换即可得出结果.【详解】函数;将函数的图象向左平移个单位长度得到,故选:D2、D【解析】由幂函数的图象过点(3,9)求出a的值,再比较m、n、t的大小【详解】幂函数f(x)=xa图象过点(3,9),∴3a=9,a=2;,∴m>n>t故选D【点睛】本题考查了幂函数的图象与性质的应用问题,是基础题3、C【解析】由题设有,所以,选C.4、A【解析】因为,且各段单调,所以实数的取值范围是,选A.点睛:已知函数零点求参数的范围的常用方法,(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,作出函数的图象,然后数形结合求解5、D【解析】首先解一元二次不等式求得集合A,之后利用交集中元素的特征求得,得到结果.【详解】由解得,所以,又因为,所以,故选:D.【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.6、A【解析】根据向量投影的几何意义得到结果即可.【详解】由A,B是以O为圆心的圆上的动点,且,根据向量的点积运算得到=||•||•cos,由向量的投影以及圆中垂径定理得到:||•cos即OB在AB方向上的投影,等于AB的一半,故得到=||•||•cos.故选A【点睛】本题考查向量的数量积公式的应用,以及向量投影的应用.平面向量数量积公式的应用主要有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).7、A【解析】由,可得的周期为,利用周期性和单调性化简计算即可得出结果.【详解】因为,所以的周期为当时,,则在上单调递减,所以在上单调递减因为,且所以故故选:A.8、A【解析】计算出,结合可求得的值.【详解】因为,所以,若,则.故选:A9、B【解析】因为线段的垂直平分线上的点到点,的距离相等,所以即:,化简得:故选10、B【解析】根据初相定义直接可得.【详解】由初相定义可知,当时的相位称为初相,所以,函数的初相为.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】由已知结合两角和的正切求解【详解】由,可知tan(α+β)=1,得,即tanα+tanβ=,∴故答案为1【点睛】本题考查两角和的正切公式的应用,是基础的计算题12、【解析】直接代入空间中两点间的距离公式即可得解.【详解】∵空间中两个点A(1,3,1),B(5,7,5),∴|AB|4故答案为:4【点睛】本题考查空间中两点间的距离公式,属于基础题.13、3【解析】先利用条件找到,然后对减元,化为,利用基本不等式求最小值.【详解】,,,三点共线,.则当且仅当,即时等号成立.故答案为:3.【点睛】(1)在向量运算中:①构造向量加、减法的三角形法则和平行四边形法则;②树立“基底”意识,利用基向量进行线性运算;(2)基本不等式求最值要注意应用条件:“一正二定三相等”.14、【解析】由函数过点可求得参数a的值,进而解对数不等式即可解决.详解】由函数过点可得,,则,即,此时由可得即故答案为:15、【解析】由函数的奇偶性与单调性分析可得,结合对数的运算性质变形可得,从而可得结果【详解】因为函数是定义在上的偶函数,且在区间上单调递减,所以,又由,则原不等式变形可得,解可得:,即的取值范围为,故答案为【点睛】本题主要考查函数的单调性与奇偶性的综合应用,考查了指数函数的单调性以及对数的运算,意在考查综合应用所学知识解答问题的能力,属于基础题16、【解析】由题意,设代入点坐标可得,计算即得解【详解】由题意,设,过点故,解得故则故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)a=-1;(2)函数f(x)在定义域R上单调递增,详见解析【解析】(1)根据定义域为R的奇函数满足f(0)=0即可求得结果;(2)由定义法知,当x1<x2时,f(x1)<f(x2),故可证得结果.【详解】(1)因为函数f(x)是奇函数,且f(x)的定义域为R,所以f(0)==0,所以a=-1,经检验满足题意.(2)f(x)==1-,函数f(x)在定义域R上单调递增理由:设任意的x1,x2,且x1<x2,则f(x1)-f(x2)=.因为x1<x2,所以,所以<0,所以f(x1)<f(x2),所以函数f(x)在定义域R上单调递增【点睛】本题考查指数型复合函数的基本性质,要求学生会根据函数的奇偶性求参数以及利用定义法证明函数的单调性,属基础题.18、(1)(2)(3)存在,【解析】(1)由条件求出,由此求出,利用单调性求其在时的值域;(2)利用换元法,考虑轴与区间的位置关系求,(3)令,由已知可得函数,,在上有且仅有一个交点,由此列不等式求的取值范围.【小问1详解】因为函数是偶函数,故而,可得,则,故易知在上单调递增,故,;故【小问2详解】令,故;则,对称轴为①当时,在上单增,故;②当时,在上单减,在上单增,故;③当时,在上单减,故;故函数的最小值【小问3详解】由(2)知当时,;则,即令,,问题等价于两个函数与的图象在上有且只有一个交点;由,函数的图象开口向下,对称轴为,在上单调递减,在上单调递增,可图知;故【点睛】函数的零点个数与函数和的图象的交点个数相等,故可通过函数图象研究形如函数的零点问题.19、(1)零点为;(2).【解析】(1)分类讨论,函数对应方程根的个数,综合讨论结果,可得答案;(2)分析函数的奇偶性和单调性,进而可将不等式化为,解得的取值范围【详解】(1),或,函数的零点为;(2)当时,,此时,当时,,同理,,故函数为偶函数,又时,为增函数,(2)时,(2),即,,,综上所述,的取值范围是.【点睛】关键点点睛:(1)函数的零点即相应方程的根;(2)处理抽象不等式要充分利用函数的单调性与奇偶性去掉绝对值,转化为具体的不等式.20、(1);(2)【解析】(1)根据角的终边上有一点,利用三角函数的定义得到,再利用二倍角的余弦公
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 为建立健全隐患排查制度
- 中学师德师风年度评议制度
- 智能眼镜研发合同协议2025年规范
- 老年高血压的非药物干预方案
- 老年高血压合并高尿酸血症饮食与别嘌醇及维生素方案
- 处方点评与干预制度及流程
- 病理标本管理制度及流程
- 老年运动处方与健康促进的个性化方案
- 2026中国热带农业科学院农业机械研究所第一批公开招聘9人备考题库及参考答案详解
- 2026山东淄博市淄川区事业单位面向大学生退役士兵专项岗位招聘备考题库有答案详解
- 柴油维修技术培训课件
- 安全附件管理制度规范
- 2026院感知识考试题及答案
- 《红楼梦》导读 (教学课件) -高中语文人教统编版必修下册
- 室外供热管道安装监理实施细则
- 腰背部推拿课件
- 工程转接合同协议
- DL∕T 5210.6-2019 电力建设施工质量验收规程 第6部分:调整试验
- 无机与分析化学理论教案
- 名词性从句 讲义-英语高考一轮复习语法部分
- T∕ZZB 2722-2022 链板式自动排屑装置
评论
0/150
提交评论