版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省漳州市龙海程溪中学2026届数学高二上期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在三棱柱中,,,,则这个三棱柱的高()A1 B.C. D.2.已知各项都为正数的等比数列,其公比为q,前n项和为,满足,且是与的等差中项,则下列选项正确的是()A. B.C D.3.年月日我国公布了第七次全国人口普查结果.自新中国成立以来,我国共进行了七次全国人口普查,如图为我国历次全国人口普查人口性别构成及总人口性别比(以女性为,男性对女性的比例)统计图,则下列说法错误的是()A.第五次全国人口普查时,我国总人口数已经突破亿B.第一次全国人口普查时,我国总人口性别比最高C.我国历次全国人口普查总人口数呈递增趋势D.我国历次全国人口普查总人口性别比呈递减趋势4.19世纪法国著名数学家加斯帕尔·蒙日,创立了画法几何学,推动了空间几何学的独立发展,提出了著名的蒙日圆定理:椭圆的两条切线互相垂直,则切线的交点位于一个与椭圆同心的圆上,称为蒙日圆,且该圆的半径等于椭圆长半轴长与短半轴长的平方和的算术平方根.若圆与椭圆的蒙日圆有且仅有一个公共点,则b的值为()A. B.C. D.5.过双曲线的右焦点有一条弦是左焦点,那么的周长为()A.28 B.C. D.6.《莱茵德纸草书》(RhindPapyrus)是世界上最古老的数学著作之一.书中有这样一道题目:把93个面包分给5个人,使每个人所得面包个数成等比数列,且使较小的两份之和等于中间一份的四分之三,则最大的一份是()个A.12 B.24C.36 D.487.已知点是抛物线上的一点,F是抛物线的焦点,则点M到F的距离等于()A.6 B.5C.4 D.28.在四面体中,为的中点,为棱上的点,且,则()A. B.C. D.9.已知中,内角,,的对边分别为,,,,.若为直角三角形,则的面积为()A. B.C.或 D.或10.已知直线过点,,则该直线的倾斜角是()A. B.C. D.11.若数列的前项和,则此数列是()A.等差数列 B.等比数列C.等差数列或等比数列 D.以上说法均不对12.直三棱柱ABC-A1B1C1中,△ABC为等边三角形,AA1=AB,M是A1C1的中点,则AM与平面所成角的正弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数,若,则的值等于_______14.已知双曲线的左、右焦点分别为、,直线与的左、右支分别交于点、(、均在轴上方).若直线、的斜率均为,且四边形的面积为,则__________.15.若圆锥的轴截面是顶角为的等腰三角形,且圆锥的侧面积为,则该圆锥的体积为______.16.直线l过抛物线的焦点F,且l与该抛物线交于不同的两点,.若,则弦AB的长是____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列中,,.(1)求的通项公式;(2)若,求数列的前n项和.18.(12分)数列满足,,.(1)证明:数列是等差数列;(2)设,求数列的前项和.19.(12分)已知函数,.(1)当时,求曲线在点处的切线方程;(2)若在区间上有唯一的零点.(ⅰ)求的取值范围;(ⅱ)证明:.20.(12分)已知等差数列满足,.(1)求的通项公式;(2)设,求数列的前项和.21.(12分)已知抛物线的焦点F到准线的距离为2(1)求C的方程;(2)已知O为坐标原点,点P在C上,点Q满足,求直线斜率最大值.22.(10分)如图所示,、分别为椭圆的左、右焦点,A,B为两个顶点,已知椭圆C上的点到、两点的距离之和为4.(1)求a的值和椭圆C的方程;(2)过椭圆C的焦点作AB的平行线交椭圆于P,Q,求的面积
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先求出平面ABC的法向量,然后将高看作为向量在平面ABC的法向量上的投影的绝对值,则答案可求.【详解】设平面ABC的法向量为,而,,则,即有,不妨令,则,故,设三棱柱的高为h,则,故选:D.2、D【解析】根据题意求得,即可判断AB,再根据等比数列的通项公式即可判断C;再根据等比数列前项和公式即可判断D.【详解】解:因为各项都为正数的等比数列,,所以,又因是与的等差中项,所以,即,解得或(舍去),故B错误;所以,故A错误;所以,故C错误;所以,故D正确.故选:D.3、D【解析】根据统计图判断各选项的对错.【详解】由统计图第五次全国人口普查时,男性和女性人口数都超过6亿,故总人口数超过12亿,A对,由统计图,第一次全国人口普查时,我国总人口性别比为107.56,超过余下几次普查的人口的性别比,B对,由统计图可知,我国历次全国人口普查总人口数呈递增趋势,C对,由统计图可知,第二次,第三次,第四次,第五次时总人口性别比呈递增趋势,D错,D错,故选:D.4、B【解析】由题意求出蒙日圆方程,再由两圆只有一个交点可知两圆相切,从而列方程可求出b的值【详解】由题意可得椭圆的蒙日圆的半径,所以蒙日圆方程为,因为圆与椭圆的蒙日圆有且仅有一个公共点,所以两圆相切,所以,解得,故选:B5、C【解析】根据双曲线方程得,,由双曲线的定义,证出,结合即可算出△的周长【详解】双曲线方程为,,根据双曲线的定义,得,,,,相加可得,,,因此△的周长,故选:C6、D【解析】设等比数列的首项为,公比,根据题意,由求解.【详解】设等比数列的首项为,公比,由题意得:,即,解得,所以,故选:D7、B【解析】先求出,再利用焦半径公式即可获解.【详解】由题意,,解得所以故选:B.8、A【解析】利用空间向量加法运算,减法运算,数乘运算即可得到答案.【详解】如图故选:A9、C【解析】由正弦定理化角为边后,由余弦定理求得,然后分类讨论:或求解【详解】由正弦定理,可化为:,即,所以,,所以,又为直角三角形,若,则,,,,若,则,,,故选:C10、C【解析】根据直线的斜率公式即可求得答案.【详解】设该直线的倾斜角为,该直线的斜率,即.故选:C11、D【解析】利用数列通项与前n项和的关系和等差数列及等比数列的定义判断.【详解】当时,,当时,,当时,,所以是等差数列;当时,为非等差数列,非等比数列’当时,,所以是等比数列,故选:D12、B【解析】取的中点,以为原点,所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,即可根据线面角的向量公式求出【详解】如图所示,取的中点,以为原点,所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,不妨设,则,所以,平面的一个法向量为设AM与平面所成角为,向量与所成的角为,所以,即AM与平面所成角的正弦值为故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】对函数进行求导,把代入导函数中,化简即可求出的值.【详解】函数.故答案为:.14、【解析】设点关于原点的对称点为点,连接,分析可知四边形为平行四边形,可得出,设,可得出直线的方程为,设点、,将直线的方程与双曲线的方程联立,列出韦达定理,求出的取值范围,利用三角形的面积公式可求得的值,即可求得的值.【详解】解:设点关于原点的对称点为点,连接,如下图所示:在双曲线中,,,则,即点、,因为原点为、的中点,则四边形为平行四边形,所以,且,因为,故、、三点共线,所以,,故,由题意可知,,设,则直线的方程为,设点、,联立,可得,所以,,可得,由韦达定理可得,,可得,,整理可得,即,解得或(舍),所以,,解得.故答案为:.15、【解析】设圆锥的高为,可得出圆锥的母线长为,以及圆锥的底面半径为,利用圆锥的侧面积公式求出的值,再利用锥体的体积公式可求得结果.【详解】设圆锥的高为,由于圆锥的轴截面是顶角为的等腰三角形,则轴截面三角形的底角为,故该圆锥的母线长为,底面半径为,圆锥的侧面积为,可得,因此,该圆锥的体积为.故答案为:.16、4【解析】由题意得,再结合抛物线的定义即可求解.【详解】由题意得,由抛物线的定义知:,故答案为:4.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)先设等差数列的公差为,由题中条件,列出方程求出首项和公差,即可得出通项公式;(2)根据(1)的结果,得到,再由等比数列的求和公式,即可得出结果.【详解】(1)设等差数列的公差为,因为,,所以,解得,所以;(2)由(1)可得,,即数列为等比数列,所以数列的前n项和.18、(1)证明见解析;(2)【解析】(1)将的两边同除以,得到,由等差数列的定义,即可作出证明;(2)有(1)求出,利用错位相减法即可求解数列的前项和.试题解析:(1)证明:由已知可得=+1,即-=1.所以是以=1为首项,1为公差的等差数列(2)由(1)得=1+(n-1)·1=n,所以an=n2.从而bn=n·3n.Sn=1·31+2·32+3·33+…+n·3n,①3Sn=1·32+2·33+…+(n-1)·3n+n·3n+1.②①-②得-2Sn=31+32+…+3n-n·3n+1=-n·3n+1=.所以Sn=.点睛:本题主要考查了等差数列的定义、等差数列的判定与证明和数列的求和,着重考查了学生分析问题和解答问题的能力,本的解答中利用等差数列的定义得到数列为等差数列,求解的表达式,从而化简得到,利用乘公比错位相减法求和中,准确计算是解答的一个难点.19、(1);(2)(ⅰ);(ⅱ)证明见解析.【解析】(1)求出,,利用导数的几何意义即可求得切线方程;(2)(ⅰ)根据题意对参数分类讨论,当时,等价转化,且构造函数,利用零点存在定理,即可求得参数的取值范围;(ⅱ)根据(ⅰ)中所求得到与的等量关系,求得并构造函数,利用导数研究其单调性和最值,则问题得证.【小问1详解】当时,,则,故,,则曲线在点处的切线方程为.【小问2详解】(ⅰ)因为,故可得,因为,则当时,,则,无零点,不满足题意;当时,若在有一个零点,即在有一个零点,也即在有一个零点,又,则单调递增,则只需,解得.综上所述,若在区间上有唯一的零点,则;(ⅱ)由(ⅰ)可知,若在区间上有唯一的零点,则,也即,则,令,则,又在都是单调增函数,故是单调增函数,又,故,则在单调递增,则,故,即证.【点睛】本题考查导数的几何意义,利用导数研究函数的零点以及最值;处理问题的关键是合理转化函数零点问题,以及充分利用零点存在定理,熟练掌握构造函数法,属综合困难题.20、(1);(2).【解析】(1)设等差数列的公差为,根据题意可得出关于、的方程组,解出这两个量的值,可得出数列的通项公式;(2)求得,利用裂项法可求得.【小问1详解】解:设等差数列的公差为,则,可得,由可得,即,解得,,故.【小问2详解】解:,因此,.21、(1);(2)最大值为.【解析】(1)由抛物线焦点与准线的距离即可得解;(2)设,由平面向量的知识可得,进而可得,再由斜率公式及基本不等式即可得解.【详解】(1)抛物线的焦点,准线方程为,由题意,该抛物线焦点到准线的距离为,所以该抛物线的方程为;(2)[方法一]:轨迹方程+基本不等式法设,则,所以,由在抛物线上可得,即,所以直线的斜率,当时,;当时,,当时,因为,此时,当且仅当,即时,等号成立;当时,;综上,直线斜率的最大值为.[方法二]:【最优解】轨迹方程+数形结合法同方法一得到点Q的轨迹方程为设直线的方程为,则当直线与抛物线相切时,其斜率k取到最值.联立得,其判别式,解得,所以直线斜率的最大值为[方法三]:轨迹方程+换元求最值法同方法一得点Q的轨迹方程为设直线的斜率为k,则令,则的对称轴为,所以.故直线斜率的最大值为[方法四]参数+基本不等式法由题可设因,所以于是,所以则直线的斜率为当且仅当,即,时等号成立,所以直线斜率的最大值为【整体点评】方法一根据向量关系,利用代点法求得Q的轨迹方程,得到直线OQ的斜率关于的表达式,然后利用分类讨论,结合基本不等式求得最大值;方法二同方法一得到点Q的轨迹方程,然后利用数形结合法,利用判别式求得直线OQ的斜率的最大值,为最优解;方法三同方法一求得Q的轨迹方程,得到直线的斜率k的平方关于的表达式,利用换元方法转化为二次函数求得最大值,进而得到直线斜率的最大值;方法四利用参
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西省晋中市泽州2025-2026年九年级上期末语文试卷(含答案)
- 海南乐东黎族自治县2025-2026学年八年级上学期末质量监测道德与法治试卷
- 2025-2026学年春统编版语文五级下册第二单元综合能力检测情境卷(含答案)
- 2024年理县幼儿园教师招教考试备考题库附答案解析(必刷)
- 2025年云南外事外语职业学院单招职业技能考试模拟测试卷带答案解析
- 2024年萧县幼儿园教师招教考试备考题库带答案解析
- 2025年浙江师范大学马克思主义基本原理概论期末考试模拟题含答案解析(必刷)
- 2025年南京旅游职业学院单招职业倾向性测试题库带答案解析
- 2025年海南政法职业学院马克思主义基本原理概论期末考试模拟题附答案解析
- 2025年广东创新科技职业学院马克思主义基本原理概论期末考试模拟题含答案解析(夺冠)
- 软件项目绩效考核制度方案
- 春节前停工停产安全培训课件
- 洁净室安全管理培训内容课件
- 真性红细胞增多症
- 临床检验初级师历年试题及答案2025版
- 干部教育培训行业跨境出海战略研究报告
- 车库使用协议合同
- 组件设计文档-MBOM构型管理
- 山东省泰安市2024-2025学年高一物理下学期期末考试试题含解析
- 竹子产业发展策略
- 【可行性报告】2023年硫精砂项目可行性研究分析报告
评论
0/150
提交评论