版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东揭阳市惠来县第一中学2026届数学高二上期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“方程表示椭圆”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件2.如图,在棱长为1的正方体中,M是的中点,则点到平面MBD的距离是()A. B.C. D.3.某商场有四类食品,其中粮食类、植物油类、动物性食品类以及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4 B.5C.6 D.74.若双曲线一条渐近线被圆所截得的弦长为,则双曲线的离心率是()A. B.C. D.5.已知p、q是两个命题,若“(¬p)∨q”是假命题,则()A.p、q都是假命题 B.p、q都是真命题C.p是假命题q是真命题 D.p是真命题q是假命题6.双曲线的渐近线方程是()A. B.C. D.7.已知椭圆的左右焦点分别为,直线与C相交于M,N两点(其中M在第一象限),若M,,N,四点共圆,且直线倾斜角不小于,则椭圆C的离心率e的取值范围是()A. B.C. D.8.在△ABC中,角A,B,C所对的边分别是a,b,c,若c=1,B=45°,cosA=,则b等于()A. B.C. D.9.已知的周长为,顶点、的坐标分别为、,则点的轨迹方程为()A. B.C. D.10.已知椭圆方程为,点在椭圆上,右焦点为F,过原点的直线与椭圆交于A,B两点,若,则椭圆的方程为()A. B.C. D.11.已知函数的导函数满足,则()A. B.C.3 D.412.变量,之间的一组相关数据如表所示:若,之间的线性回归方程为,则的值为()45678.27.86.65.4A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知球的半径为3,则该球的体积为_________.14.若动直线分别与函数和的图像交于A,B两点,则的最小值为______15.已知椭圆C:的左右焦点分别为,,O为坐标原点,以下说法正确的是______①过点的直线与椭圆C交于A,B两点,则的周长为8②椭圆C上存在点P,使得③椭圆C的离心率为④P为椭圆上一点,Q为圆上一点,则线段PQ的最大长度为316.双曲线的焦点在圆上,圆O与双曲线C的渐近线在第一、四象限分别交于P,Q两点满足(其中O是坐标原点),则的面积是_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点为F,点在C上(1)求p的值及F的坐标;(2)过F且斜率为的直线l与C交于A,B两点(A在第一象限),求18.(12分)已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为2,且(1)求抛物线的方程;(2)过点作直线交抛物线于两点,设,判断是否为定值?若是,求出该定值;若不是,说明理由.19.(12分)已知三棱柱中,,,平面ABC,,E为AB中点,D为上一点(1)求证:;(2)当D为中点时,求平面ADC与平面所成角的正弦值20.(12分)唐代诗人李颀的诗《古从军行》开头两句说:“白日登上望烽火,黄昏饮马傍交河,”诗中隐含着一个有趣的“将军饮马”问题,这是一个数学问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使得总路程最短?在平面直角坐标系中,将军从点处出发,河岸线所在直线方程为,并假定将军只要到达军营所在区域即为回到军营.军营所在区域可表示为.(1)求“将军饮马”的最短总路程;(2)因军情紧急,将军来不及饮马,直接从A点沿倾斜角为45°的直线路径火速回营,已知回营路径与军营边界的交点为M,N,军营中心与M,N连线的斜率分别为,,试求的值.21.(12分)已知函数,且在处取得极值.(1)求的值;(2)当,求的最小值.22.(10分)一个长方体的平面展开图及该长方体的直观图的示意图如图所示(1)请将字母F,G,H标记在长方体相应的顶点处(不需说明理由):(2)若且有下面两个条件:①;②,请选择其中一个条件,使得DF⊥平面,并证明你的结论
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据方程表示椭圆,且2,再判断必要不充分条件即可.【详解】解:方程表示椭圆满足,解得,且2所以“”是“方程表示椭圆”的必要不充分条件.故选:B2、A【解析】等体积法求解点到平面的距离.【详解】连接,,则,,由勾股定理得:,,取BD中点E,连接ME,由三线合一得:ME⊥BD,则,故,设到平面MBD的距离是,则,解得:,故点到平面MBD的距离是.故选:A3、C【解析】按照分层抽样的定义进行抽取.【详解】按照分层抽样的定义有,粮食类:植物油类:动物性食品类:果蔬类=4:1:3:2,抽20个出来,则粮食类8个,植物油类2个,动物性食品类6个,果蔬类4个,则抽取的植物油类与果蔬类食品种数之和是6个.故选:C.4、A【解析】根据(为弦长,为圆半径,为圆心到直线的距离),求解出的关系式,结合求解出离心率的值.【详解】取的一条渐近线,因为(为弦长,为圆半径,为圆心到直线的距离),其中,所以,所以,所以,所以,所以,故选:A.【点睛】关键点点睛:解答本题的关键是利用几何法表示出圆的半径、圆心到直线的距离、半弦长之间的关系.5、D【解析】由已知可得¬p,q都是假命题,从而可分析判断各选项【详解】∵“(¬p)∨q”是假命题,∴¬p,q都是假命题,∴p真,q假,故选:D.6、A【解析】先将双曲线的方程化为标准方程得,再根据双曲线渐近线方程求解即可.【详解】解:将双曲线的方程化为标准方程得,所以,所以其渐近线方程为:,即.故选:A.7、B【解析】设椭圆的半焦距为c,由椭圆的中心对称性和圆的性质得以为直径的圆与椭圆C有公共点,则有以,再根据直线倾斜角不小于得,由椭圆的定义得,由此可求得椭圆离心率的范围.【详解】解:设椭圆的半焦距为c,由椭圆的中心对称性和M,,N,四点共圆得,四边形必为一个矩形,即以为直径的圆与椭圆C有公共点,所以,所以,所以,因为直线倾斜角不小于,所以直线倾斜角不小于,所以,化简得,,因为,所以,所以,,又,因为,所以,所以,所以,所以.故选:B.8、C【解析】先由cosA的值求出,进而求出,用正弦定理求出b的值.【详解】因为cosA=,所以,所以由正弦定理:,得:.故选:C9、D【解析】分析可知点的轨迹是除去长轴端点的椭圆,求出、的值,结合椭圆焦点的位置可得出顶点的轨迹方程.【详解】由已知可得,,且、、三点不共线,故点的轨迹是以、为焦点,且除去长轴端点的椭圆,由已知可得,得,,则,因此,点的轨迹方程为.故选:D.10、A【解析】根据椭圆的性质可得,则椭圆方程可求.【详解】由点在椭圆上得,由椭圆的对称性可得,则,故椭圆方程为.故选:A.11、C【解析】先对函数求导,再由,可求出的关系式,然后求【详解】由,得,因为,所以,所以,故选:C12、C【解析】本题先求样本点中心,再利用线性回归方程过样本点中心直接求解即可.【详解】解:,,所以样本点中心:,线性回归方程过样本点中心,则解得:,故选:C【点睛】本题考查线性回归方程过样本点中心,是简单题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据球的体积公式计算可得;【详解】解:因为球的半径,所以球的体积;故答案为:14、【解析】利用导数求出与平行的曲线的切线,再利用两点间距离公式进行求解即可.【详解】设曲线的切点为,由,所以曲线的切线的斜率为,直线的斜率为,当切线与平行时,即,即切点为,当直线过切点时,有最小值,即,此时,解方程组:,,故答案为:【点睛】关键点睛:利用曲线的切线性质进行求解是解题的关键.15、①②④【解析】根据椭圆的几何性质结合的周长计算可判断①;根据,可通过以为直径作圆,是否与椭圆相交判断②;求出椭圆的离心率可判断③;计算椭圆上的点到圆心的距离的最大值,即可判断④.【详解】对于①,由题意知:的周长等于,故①正确;对于②,,故以为直径作圆,与椭圆相交,交点即设为P,故椭圆C上存在点P,使得,故②正确;对于③,,故③错误;对于④,设P为椭圆上一点,坐标为,则,故,因为,所以的最大值为2,故线段PQ的最大长度为2+1=3,故④正确,故答案为:①②④.16、【解析】根据双曲线的焦点在圆上可求出的值,设线段与轴的交点坐标为,进而根据求出的坐标,代入圆中,求出的值,即可求出结果.【详解】因为双曲线的焦点在圆上,所以,设线段与轴的交点坐标为,结合双曲线与圆的对称性可知为线段的中点,又因为,即,且,则,又因为直线的方程为,所以,又因为在圆上,所以,又因为,则,所以,从而,故,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)4【解析】(1)将M坐标代入方程即可;(2)联立直线l与抛物线方程得到A、B的横坐标,再利用焦半径公式求出即可.【小问1详解】将代入,得,解得,所以【小问2详解】由(1)得抛物线方程为,直线l的方程为,联立消y得,解得或,因为A在第一象限,所以,所以,,所以18、(1)(2)是,0【解析】(1)根据题意,设抛物线的方程为:,则,,进而根据得,进而得答案;(2)直线的方程为,进而联立方程,结合韦达定理与向量数量积运算化简整理即可得答案.【小问1详解】解:由题意,设抛物线的方程为:,所以点的坐标为,点的坐标为,因为,所以,即,解得.所以抛物线的方程为:【小问2详解】解:设直线的方程为,则联立方程得,所以,,因为,所以.所以为定值.19、(1)证明见解析;(2).【解析】(1)利用线面垂直的性质定理及线面垂直的判定定理即证;(2)利用坐标法即求.【小问1详解】∵,E为AB中点,∴,∵平面ABC,平面ABC,∴,又,,∴平面,平面,∴;【小问2详解】以C点为坐标原点,CA,CB,分别为x,y,z轴建立空间直角坐标系,不妨设,则平面的法向量为,设平面ADC法向量为,则,∴,即,令,则∴平面ADC与平面所成角的余弦值为,所以平面ADC与平面所成角的正弦值.20、(1);(2).【解析】(1)根据题意作出图形,然后求出关于直线的对称点,进而根据圆的性质求出到圆上的点的最短距离即可;(2)将直线方程代入圆的方程并化简,进而结合韦达定理求得答案.【小问1详解】若军营所在区域为,圆:的圆心为原点,半径为,作图如下:设将军饮马点为,到达营区点为,设为A关于直线的对称点,因为,所以线段的中点为,则,又,联立解得:,即,所以总路程,要使得总路程最短,只需要最短,即点到圆上的点的最短距离,即为.【小问2详解】过点A倾斜角为45°的直线方程为:,设两个交点,联立,消去y得.由韦达定理,,.21、(1);(2).【解析】(1)对函数求导,则极值点为导函数的零点,进而建立方程组解出a,b,然后讨论函数的单调区间进行验证,最后确定答案;(2)根据(1)得到函数在上的单调区间,进而求出最小值.【小问1详解】,因为在处取得极值,所以,则,所以时,,单调递减,时,,单调递增,时,,单调递减,故为函数的极值点.于是.【小问2详解】结合(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 养老院健康检查与疾病预防制度
- 公共交通服务质量投诉处理制度
- 2026年中级电工实操技能笔试模拟题
- 2026年营销知识考点指南及题目
- 2026年新闻传播专业研究生入学考试模拟题
- 2026年旅游规划目的地管理考试题
- 2026年康复辅助器具租赁合同
- 2025年吕梁职业技术学院马克思主义基本原理概论期末考试模拟题带答案解析(夺冠)
- 古代茶人介绍课件
- 2025 小学六年级科学上册科学精神名言赏析课件
- 嵊州市二年级上学期期末检测语文试卷(PDF版含答案)
- 2024年国务院安全生产和消防工作考核要点解读-企业层面
- 中建双优化典型案例清单
- 小学数学解题研究(小学教育专业)全套教学课件
- 数据生命周期管理与安全保障
- 早期胃癌出院报告
- 吊顶转换层设计图集
- 优胜教育机构员工手册范本规章制度
- 钾钠氯代谢与紊乱
- 安徽省小型水利工程施工质量检验与评定规程(2023校验版)
- 山地造林施工设计方案经典
评论
0/150
提交评论