版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省厦冂双十中学2026届高二数学第一学期期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知随机变量服从正态分布,,则()A. B.C. D.2.已知的周长为,顶点、的坐标分别为、,则点的轨迹方程为()A. B.C. D.3.某学习小组研究一种卫星接收天线(如图①所示),发现其曲面与轴截面的交线为抛物线,在轴截面内的卫星波束呈近似平行状态射入形为抛物线的接收天线,经反射聚焦到焦点处(如图②所示).已知接收天线的口径(直径)为3.6m,深度为0.6m,则该抛物线的焦点到顶点的距离为()A.1.35m B.2.05mC.2.7m D.5.4m4.函数在区间(0,e)上的极小值为()A.-e B.1-eC.-1 D.15.在四面体中,,,,且,,则等于()A. B.C. D.6.若、、为空间三个单位向量,,且与、所成的角均为,则()A.5 B.C. D.7.19世纪法国著名数学家加斯帕尔·蒙日,创立了画法几何学,推动了空间几何学的独立发展,提出了著名的蒙日圆定理:椭圆的两条切线互相垂直,则切线的交点位于一个与椭圆同心的圆上,称为蒙日圆,且该圆的半径等于椭圆长半轴长与短半轴长的平方和的算术平方根.若圆与椭圆的蒙日圆有且仅有一个公共点,则b的值为()A. B.C. D.8.已知抛物线上一点M与焦点间的距离是3,则点M的纵坐标为()A.1 B.2C.3 D.49.空间直角坐标系中、、)、,其中,,,,已知平面平面,则平面与平面间的距离为()A. B.C. D.10.等比数列,,,成公差不为0的等差数列,,则数列的前10项和()A. B.C. D.11.已知为等差数列,为公差,若成等比数列,且,则数列的前项和为()A. B.C. D.12.在平面上有及内一点O满足关系式:即称为经典的“奔驰定理”,若的三边为a,b,c,现有则O为的()A.外心 B.内心C.重心 D.垂心二、填空题:本题共4小题,每小题5分,共20分。13.命题“”的否定为_____________.14.数学家华罗庚说:“数缺形时少直观,形少数时难入微”,事实上,很多代数问题可以转化为几何问题加以解决.例如:与相关的代数问题,可以转化为点与点之间的距离的几何问题.结合上述观点:对于函数,的最小值为______15.日常生活中的饮用水通常是经过净化的.随着水的纯净度的提高,所需净化费用不断増加.已知将吨水净化到纯净度为时所需费用(单位:元)为.则净化到纯净度为时所需费用的瞬时变化率是净化到纯净度为时所需费用的瞬时变化率的___________倍,这说明,水的纯净度越高,净化费用增加的速度越___________(填“快”或“慢”).16.函数单调增区间为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,平面,底面为矩形,,,为的中点,.请用空间向量知识解答下列问题:(1)求线段的长;(2)若为线段上一点,且,求平面与平面夹角的余弦值.18.(12分)正四棱柱的底面边长为2,侧棱长为4.E为棱上的动点,F为棱的中点.(1)证明:;(2)若E为棱上的中点,求直线BE到平面的距离.19.(12分)已知椭圆左右焦点分别为,,离心率为,P是椭圆上一点,且面积的最大值为1.(1)求椭圆的方程;(2)过的直线交椭圆于M,N两点,求的取值范围.20.(12分)已知A,B两地相距200km,某船从A地逆水到B地,水速为8km/h,船在静水中的速度为vkm/h(v>8).若船每小时的燃料费与其在静水中速度的平方成正比,比例系数为k,当v=12km/h,每小时的燃料费为720元(1)求比例系数k(2)当时,为了使全程燃料费最省,船的实际前进速度应为多少?(3)当(x为大于8的常数)时,为了使全程燃料费最省,船的实际前进速度应为多少?21.(12分)已知:,有,:方程表示经过第二、三象限的抛物线,.(1)若是真命题,求实数的取值范围;(2)若“”是假命题,“”是真命题,求实数的取值范围.22.(10分)已知△ABC的内角A,B,C的对边分别是a,b,c,且.(1)求角C的大小;(2)若,求△ABC面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】直接利用正态分布的应用和密度曲线的对称性的应用求出结果【详解】根据随机变量服从正态分布,所以密度曲线关于直线对称,由于,所以,所以,则,所以故选:B.【点睛】本题考查的知识要点:正态分布的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题2、D【解析】分析可知点的轨迹是除去长轴端点的椭圆,求出、的值,结合椭圆焦点的位置可得出顶点的轨迹方程.【详解】由已知可得,,且、、三点不共线,故点的轨迹是以、为焦点,且除去长轴端点的椭圆,由已知可得,得,,则,因此,点的轨迹方程为.故选:D.3、A【解析】根据题意先建立恰当的坐标系,可设出抛物线方程,利用已知条件得出点在抛物线上,代入方程求得p值,进而求得焦点到顶点的距离.【详解】如图所示,在接收天线的轴截面所在平面上建立平面直角坐标系xOy,使接收天线的顶点(即抛物线的顶点)与原点O重合,焦点F在x轴上设抛物线的标准方程为,由已知条件可得,点在抛物线上,所以,解得,因此,该抛物线的焦点到顶点的距离为1.35m,故选:A.4、D【解析】求导判断函数的单调性即可求解【详解】的定义域为(0,+∞),,令,得x=1,当x∈(0,1)时,,单调递减,当x∈(1,e)时,,单调递增,故在x=1处取得极小值.故选:D.5、B【解析】根据空间向量的线性运算即可求解.【详解】解:由题知,故选:B.6、C【解析】先求的平方后再求解即可.【详解】,故,故选:C7、B【解析】由题意求出蒙日圆方程,再由两圆只有一个交点可知两圆相切,从而列方程可求出b的值【详解】由题意可得椭圆的蒙日圆的半径,所以蒙日圆方程为,因为圆与椭圆的蒙日圆有且仅有一个公共点,所以两圆相切,所以,解得,故选:B8、B【解析】利用抛物线的定义求解即可【详解】抛物线的焦点为,准线方程为,因为抛物线上一点M与焦点间的距离是3,所以,得,即点M的纵坐标为2,故选:B9、A【解析】由已知得,,,设向量与向量、都垂直,由向量垂直的坐标运算可求得,再由平面平行和距离公式计算可得选项.【详解】解:由已知得,,,设向量与向量、都垂直,则,即,取,,又平面平面,则平面与平面间的距离为,故选:A.10、C【解析】先设等比数列的公比为,结合条件可知,由等差中项可知,利用等比数列的通项公式进行化简求出,最后利用分组求和法,以及等比数列、等差数列的求和公式,即可求出数列的前10项和.【详解】设等比数列的公比为,,,成公差不为0的等差数列,则,,都不相等,,且,,,,即,解得:或(舍去),,所以数列的前10项和:.故选:C.11、C【解析】先利用已知条件得到,解出公差,得到通项公式,再代入数列,利用裂项相消法求和即可.【详解】因为成等比数列,,故,即,故,解得或(舍去),故,即,故的前项和为:.故选:C.【点睛】方法点睛:数列求和的方法:(1)倒序相加法:如果一个数列的前项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些像可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列:或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前项和可以两两结合求解,则称之为并项求和,形如类型,可采用两项合并求解.12、B【解析】利用三角形面积公式,推出点O到三边距离相等。【详解】记点O到AB、BC、CA的距离分别为,,,,因为,则,即,又因为,所以,所以点P是△ABC的内心.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据特称命题的否定是全称命题,可得结果.【详解】由特称命题否定是全称命题,故条件不变,否定结论所以“”的否定为“”故答案为:【点睛】本题主要考查特称命题的否定是全称命题,属基础题.14、【解析】根据题意得,表示点与点与距离之和的最小值,再找对称点求解即可.【详解】函数,表示点与点与距离之和的最小值,则点在轴上,点关于轴的对称点,所以,所以的最小值为:.故答案为:.15、①.②.快【解析】根据导数的概念可知净化所需费用的瞬时变化率即为函数的一阶导数,即先对函数求导,然后将和代入进行计算,再求,即可得到结果,进而能够判断水的纯净度越高,净化费用增加的速度的快慢【详解】由题意,可知净化所需费用的瞬时变化率为,所以,,所以,所以净化到纯净度为时所需费用的瞬时变化率是净化到纯净度为时所需费用的瞬时变化率的倍;因为,可知水的纯净度越高,净化费用增加的速度越快.故答案为:,快.16、【解析】利用导数法求解.【详解】因为函数,所以,当时,,所以的单调增区间是,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,设,由已知可得出,求出的值,即可得解;(2)利用空间向量法可求得平面与平面夹角的余弦值.【小问1详解】解:平面,,以点为坐标原点,、、所在直线分别为、、轴建立如图所示的空间直角坐标系,设,则、、、,则,,,则,解得,故.【小问2详解】解:,则,又、、,所以,,,设为平面的法向量,则,取,可得,显然,为平面的一个法向量,,因此,平面与平面夹角的余弦值为.18、(1)证明见解析;(2).【解析】(1)根据给定条件建立空间直角坐标系,利用空间位置关系的向量证明计算作答.(2)利用(1)中坐标系,证明平面,再求点B到平面的距离即可作答.【小问1详解】在正四棱柱中,以点D为原点,射线分别为x,y,z轴非负半轴建立空间直角坐标系,如图,则,因E为棱上的动点,则设,,而,,即,所以.【小问2详解】由(1)知,点,,,,设平面的一个法向量,则,令,得,显然有,则,而平面,因此,平面,于是有直线BE到平面的距离等于点B到平面的距离,所以直线BE到平面的距离是.19、(1)(2)【解析】(1)依题意得到方程组,求出、、,即可求出椭圆方程;(2)首先求出过且与轴垂直时、的坐标,即可得到,当过的直线不与轴垂直时,可设,,直线方程为,联立直线与椭圆方程,消元、列出韦达定理,根据平面向量数量积的坐标表示得到,将韦达定理代入得到,再根据函数的性质求出取值范围;【小问1详解】解:由题意可列方程组,解得,所以椭圆方程为:.【小问2详解】解:①当过的直线与轴垂直时,此时,,,则,.②当过的直线不与轴垂直时,可设,,直线方程为联立得:.所以,=将韦达定理代入上式得:.,,,由①②可知.20、(1)5(2)8km/h(3)答案见解析【解析】(1)列出关系式,根据当v=12km/h,每小时的燃料费为720元即可求解;(2)列出燃料费的函数解析式,利用导数求其最值即可;(3)讨论x的范围,结合(2)的结论可得答案.【小问1详解】设每小时的燃料费为,则当v=12km/h,每小时的燃料费为720元,代入得.【小问2详解】由(1)得.设全程燃料费为y,则(),所以,令,解得v=0(舍去)或v=16,所以当时,;当时,,所以当v=16时,y取得最小值,故为了使全程燃料费最省,船的实际前进速度应为8km/h【小问3详解】由(2)得,若时,则y在区间上单调递减,当v=x时,y取得最小值;若时,则y区间(8,16)上单调递减,在区间上单调递增,当v=16时,y取得最小值;综上,当时,船的实际前进速度为8km/h,全程燃料费最省;当时,船的实际前进速度应为(x-8)km/h,全程燃料费最省21、(1)(2)【解析】(1)将问题转化为不等式对应的方程无解,进而根据根的判别式小于0,计算即可;(2)根据且、或命题的真假判断命题p、q的真假,列出对应的不等式组,解之即可.【小问
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 古代埃及课件教学
- 2024年白银矿冶职业技术学院马克思主义基本原理概论期末考试题带答案解析
- 2024年烟台卫生健康职业学院马克思主义基本原理概论期末考试题及答案解析(夺冠)
- 2024年裕民县幼儿园教师招教考试备考题库附答案解析(夺冠)
- 2024年蚌埠学院马克思主义基本原理概论期末考试题及答案解析(夺冠)
- 2025年西华县招教考试备考题库附答案解析(必刷)
- 2025年江苏警官学院马克思主义基本原理概论期末考试模拟题附答案解析(必刷)
- 2025年天津国土资源和房屋职业学院马克思主义基本原理概论期末考试模拟题附答案解析(夺冠)
- 2025年青海理工学院马克思主义基本原理概论期末考试模拟题含答案解析(夺冠)
- 吞咽障碍护理查房经验总结
- 设备日常维护保养培训课件
- 2025年华润守正评标专家考试题库及答案
- 高血压急症的快速评估与护理
- JJG 264-2025 谷物容重器检定规程
- 养老院设施审批流程
- 【9英一模】芜湖市2024-2025学年中考第一次模拟考试英语试卷
- 公司股东入股合作协议书
- 中国糖尿病防治指南(2024版)解读
- 2024年劳动保障监察和调解仲裁股年终总结
- 物业工程管理中的成本控制方法
- 2023年四川省绵阳市中考数学试卷
评论
0/150
提交评论