湖北省襄阳市第四中学2025-2026学年高二上学期0月月考数学试题含解析_第1页
湖北省襄阳市第四中学2025-2026学年高二上学期0月月考数学试题含解析_第2页
湖北省襄阳市第四中学2025-2026学年高二上学期0月月考数学试题含解析_第3页
湖北省襄阳市第四中学2025-2026学年高二上学期0月月考数学试题含解析_第4页
湖北省襄阳市第四中学2025-2026学年高二上学期0月月考数学试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

襄阳四中2024级高二上学期10月月考数学试卷第I卷(选择题)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.若复数满足,则的虚部为()A. B. C. D.【答案】D【解析】【分析】先根据虚数单位的周期性求出的值,再通过复数除法运算求出,最后根据共轭复数和虚部的概念,即可确定的虚部.【详解】由,则,所以,故的虚部为.故选:D2.李华家养了白、灰、黑三种颜色的小兔各1只,从兔窝中每次摸取1只,有放回地摸取3次,则3次摸取的颜色各不相同的概率为()A. B. C. D.【答案】B【解析】【分析】结合分步乘法计数原理,利用古典概型概率公式求解概率即可.【详解】每次摸取有3种颜色选择,有放回地摸取3次,根据分步乘法计数原理,总基本事件数为,3次摸取的颜色各不相同,即从3种颜色中选3种排列,第1次有3种选择,第2次不能与第1次相同有2种选择,第3次不能与前两次相同有1种选择,符合条件的事件数为,所以所求概率为.故选:B.3.直线的倾斜角范围是A. B.C. D.【答案】B【解析】【分析】由题意,设直线的倾斜角为,根据直线方程,求得,即可求解.【详解】由题意,设直线的倾斜角为直线的斜率为,即,又由,所以,故选B.【点睛】本题主要考查了直线方程的应用,以及直线的斜率与倾斜角的关系的应用,着重考查了推理与运算能力,属于基础题.4.若平面的法向量为,平面的法向量为,直线的方向向量为,则()A.若,则 B.若,则C.若,则 D.若,则【答案】D【解析】【分析】根据面面平行则法向量共线计算可判断A;根据直线与平面垂直则直线的方向向量与平面法向量共线计算可判断B;根据直线的方向向量与平面法向量垂直则直线与平面平行或直线在平面内可判断C;根据法向量垂直则面面垂直可判断D.【详解】对于A,由,得,则,解得,故A错误;对于B,由,得,则,解得,故B错误;对于C,由,得,则或,故C错误;对于D,由,得,则,故D正确.故选:D.5.公元前300年,几何之父欧几里得在《几何原本》里证明了世界上只存在正四面体、正六面体、正八面体、正十二面体和正二十面体这5种正多面体.公元前200年,阿基米德把这5种正多面体进行截角操作(即切掉每个顶点),发现了5种对称的多面体,这些多面体的面仍然是正多边形,但各个面却不完全相同,如图所示,现代足球就是基于截角正二十面体的设计,则图2所示的足球截面体的棱数为()A.60 B.90 C.120 D.180【答案】B【解析】【分析】先分析得出正二十面体的面、顶点以及棱的个数,进而结合图象得出足球截面体各个面的性质,即可得出答案.【详解】易知正二十面体有20个面,每个面都是三角形,每个顶点都是5条棱的交点,每条棱都是两个面的公共边,所以,正二十面体的棱数为,顶点的个数为.由图象可知,正二十面体的每个顶点截角后为一个正五边形,即每个顶点处增加了5条棱;原来的30条棱数量不变,所以,足球截面体的棱数为.故选:B.6.已知某比赛中运动员五轮的成绩互不相等,记为,平均数为,随机删去其任一轮的成绩,得到一组新数据,记为,平均数为,对新数据和原数据,下面说法正确的是(

)A.两组数据的极差不可能相等B.两组数据的中位数不可能相等C.若,则两组数据的方差不可能相等D.若,两组数据的第百分位数可能相等【答案】C【解析】【分析】根据极差、中位数、方差、百分位数的求法,通过举反例或对计算公式、所得数据的分析判断各项的正误.【详解】A,若随机删去任一轮的成绩,恰好不是最高成绩和最低成绩,此时新数据的极差等于原数据的极差,A错误;B,不妨设,当时,若随机删去的成绩是,此时新数据的中位数等于原数据的中位数,B错误;C,若,即删去的数据恰为平均数,根据方差的计算公式,分子不变,分母变小,此时方差会变大,C正确D,在按从小到大的顺序排列的个数据中,此时原数据的分位数为第三个数和第四个数的平均数,即,删去一个数据后的个数据,按从小到大的顺序排列,可得,此时新数据的分位数为第三个数,即或,而,则,显然新数据的分位数不等于原数据的分位数,D错误.故选:C7.已知圆:和圆:,若点在两圆的公共弦上,则的最小值为(

)A.5 B.6 C.7 D.8【答案】D【解析】【分析】由两圆方程可得公共弦方程,由点在弦上有,进而利用基本不等式求最小值即可.【详解】圆:和圆:两个方程相减,即可得到两圆的公共弦:,又点在两圆的公共弦上,即,则当且仅当,即,时等号成立,即的最小值为

故选:D.8.如图,在直角中,,,点是边上异于端点的一点,光线从点出发经边反射后又回到点,若光线经过的重心,则的面积等于()A. B. C. D.【答案】A【解析】【分析】根据题意建立直角坐标系,结合光的反射原理,依次求出点关于直线,轴的对称点,并由四点共线,即可得到直线的方程,进而解出点的坐标并求得线段的长度,再运用点到直线的距离公式求得点到直线的距离,最后代入三角形的面积公式即可得解.【详解】根据题意,以点为原点,以,分别为轴,轴建立直角坐标系,则,所以直线的方程为,的重心为.设点,其中,则点关于直线的对称点,满足,解得,即,易得点关于轴对称点,由光的反射原理可知四点共线,直线的斜率,所以直线的方程为,由于直线经过的重心,代入得,化简得或(舍去),故点,点,点,直线的方程为,即,联立,解得,即点,联立,解得,即点,所以,又点到直线的距离为,所以.故选:A.二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.9.下列四个命题中正确的是()A.过点且在轴上的截距是在轴上截距的2倍的直线的方程为B.向量是直线的一个方向向量C.若直线与平行,则与的距离为D.圆与圆有两条公切线【答案】BCD【解析】【分析】根据点的坐标设出直线方程,求截距,列出方程组求解判断A,根据直线方向向量的概念判断B,利用两平行线间的距离公式判断C,根据圆与圆的位置关系判断D.【详解】选项A:由题意可知直线斜率存在且不为,设直线方程为,令解得,令解得,因为该直线在轴上的截距是在轴上截距的倍,所以,解得或,所以直线方程为或,A错误;选项B:直线的斜率为,方向向量为,当时,方向向量为,B正确;选项C:因为直线与平行,所以,由得,则直线与直线之间的距离,C正确;选项D:由题意圆圆心为,半径,圆圆心为,半径,因为,,所以两圆相交,有且仅有两条公切线,D正确;故选:BCD10.在学习了解三角形的知识后,为了锻炼实践能力,某同学搞了一次实地测量活动他位于河东岸,在靠近河岸不远处有一小湖,他于点处测得河对岸点位于点的南偏西的方向上,由于受到地势的限制,他又选了点,,,使点,,共线,点位于点的正西方向上,点位于点的正东方向上,测得,,,,并经过计算得到如下数据,则其中正确的是()A. B.的面积为C. D.点在点的北偏西方向上【答案】AC【解析】【分析】利用正余弦定理解三角形逐一求解即可;对于,先求出,,,再根据,,即可判断;对于,根据三角形的面积公式求解即可,即可判断;对于,在中,由正弦定理,即可判断;对于,过点作于点,易知,即可判断.【详解】对于,因为,点位于点的南偏西的方向上,所以,,,又,,,,在,中,,,所以,故A正确;对于,的面积为,故B错误;对于,在中,由正弦定理,得,解得,故C正确;对于,过点作于点,易知,所以,故D错误,故选:.11.如图,圆锥内有一个内切球,为底面圆的直径,球与母线,分别切于点,.若是边长为2的等边三角形,为底面圆的一条直径(与不重合),则下列说法正确的是()A.球的表面积为B.圆锥的侧面积为C.四面体的体积的取值范围是D.若为球面和圆锥侧面的交线上一点,则的最大值为【答案】ACD【解析】【分析】A选项,正内切圆即为球的截面大圆,又正的边长为2,求出球的半径,得到球的表面积;B选项,利用圆锥侧面积公式进行求解;C选项,四面体被平面截成体积相等的两部分,设到平面的距离为,求出正三角形的边长和面积,求出;D选项,动点的轨迹是圆,可得,故,因此,由均值不等式得到,故D正确.【详解】A选项,连接,等边三角形内切圆即为球的截面大圆,球心在线段上,又等边三角形的边长为2,所以,,则球的半径,所以球的表面积,故A正确;B选项,圆锥的侧面积,故B错误;C选项,由题意可得四面体被平面截成体积相等的两部分,设到平面的距离为,球的半径,三角形为等边三角形,设其边长为,则,故,故三角形的面积为,即,故C正确;D选项,依题意,动点的轨迹是圆,所在平面与圆锥底面平行,令其圆心为,,故,是边,的中点,可得,,,则有,故,又,故,即,因此,由均值不等式,得,即,当且仅当时取“”,故D正确.故选:ACD第II卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.已知,两点到直线的距离相等,则_____.【答案】或【解析】【分析】利用点到直线的距离公式进行求解即可.【详解】因为,两点到直线的距离相等,所以有或,解得或.故答案为:或13.如图,在中,已知边上的两条中线相交于点,则的余弦值为__________.【答案】【解析】【分析】利用平面向量的加减法运算和数量积的运算律求解即可.【详解】由题可得,,,所以,,,所以,故答案为:.14.在东京奥运会乒乓球男子单打决赛中,中国选手马龙战胜队友樊振东,夺得冠军.乒乓球决赛采用7局4胜制.在决胜局的比赛中,先得11分的运动员为胜方,但打到10平以后,先多得2分者为胜方.在10∶10平后,双方实行轮换发球法,每人每次只发1个球.若在决胜局比赛中,马龙发球时马龙得分的概率为,樊振东发球时马龙得分的概率为,各球的结果相互独立,在双方10∶10平后,马龙先发球,则双方战至的概率为__________.【答案】##【解析】【分析】分析双方战至时后四局的具体过程,结合独立事件概率乘法公式和互斥事件的概率加法公式求概率可得结论.【详解】记甲为马龙,乙为樊振东,在比分为后甲先发球的情况下,甲以赢下此局分两种情况:①后四球胜方依次为甲乙甲甲,概率为:.②后四球胜方依次为乙甲甲甲,概率为,,乙以赢下此局分两种情况:③后四球胜方依次为乙甲乙乙,概率为:④后四球胜方依次为甲乙乙乙,概率为,所以,所求事件概率为.故答案为:.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.近年来,“直播带货”受到越来越多人的喜爱,目前已经成为推动消费的一种流行营销形式,某直播平台有1000个直播商家,对其进行调查统计,发现所售商品多为小吃、衣帽、生鲜、玩具、饰品类等,各类直播商家所占比例如图①所示,为了更好地服务买卖双方,该直播平台打算用分层抽样的方式抽取80个直播商家进行问询交流.(1)应抽取小吃类商家多少家?(2)在问询了解直播商家的利润状况时,工作人员对抽取的80个商家的平均日利润进行了统计(单位:元),所得频率直方图如图②所示.①估计该直播平台商家平均日利润的第75百分位数;②若将平均日利润超过480元的商家称为“优质商家”,估计该直播平台“优质商家”的个数.【答案】(1)28家(2)①487.5元;②280【解析】【分析】(1)根据分层抽样的定义结合图①求解即可;(2)①先根据频率和为1求出,然后列方程求解第75百分位数,②根据频率分布直方图求出平均均日利润超过480元的频率,然后乘以1000可得答案.【小问1详解】根据分层抽样知:应抽取小吃类家;【小问2详解】①根据题意可得,解得,设75百分位数为x,因为,,所以,解得,所以该直播平台商家平均日利润的75百分位数为487.5元.②,所以估计该直播平台“优秀商家”的个数为280.16.已知圆C:.(1)过点向圆C作切线l,求切线l的方程;(2)若Q为直线m:上的动点,过Q向圆C作切线,切点为M,求的最小值.【答案】(1)或(2)【解析】【分析】(1)按斜率存在和不存在两种情形分类求解,斜率存在时设出直线方程,由圆心到直线的距离等于半径求得参数值;(2)确定直线与圆相离,由切线长公式最小即可,只要求得圆心到直线的距离(为最小值)即可得切线长的最小值.【小问1详解】若切线l的斜率不存在,则切线l的方程为.若切线l的斜率存在,设切线l的方程为,即.因为直线l与圆C相切,所以圆心到l距离为2,即,解得,所以切线l的方程为,即.综上,切线l方程为或.小问2详解】圆心到直线的距离为,直线m与圆C相离,因为,所以当最小时,有最小值.当时,最小,最小值为,所以的最小值为.17.在三棱柱中,已知,,点在底面的投影是线段的中点.(1)证明:在侧棱上存在一点,使得平面,并求出的长;(2)求平面与平面夹角的正弦值.【答案】(1)(2)【解析】【分析】(1)利用线面垂直性质以及线面垂直判定定理证明可得结论,再利用三角形相似可得;(2)建立空间直角坐标系分别求得两平面的法向量,利用面面角的向量求法计算可得结果.【小问1详解】证明:连接,在中,作于点;因为,可得,又因为平面,平面,所以;因为可得,又,平面,所以平面;因为平面,所以,而,平面,可得平面;易知,,又∽,可得,即;即在侧棱上存在一点,使得平面,且;【小问2详解】由(1)可知两两垂直,以为坐标原点,分别以所在直线为轴,建立空间直角坐标系,如下图所示:则,由,可得点的坐标为;由(1)的平面的一个法向量为,又设平面的一个法向量为,则,令,可得;可得即为平面的一个法向量,设平面与平面的夹角为,因此可得,所以平面与平面夹角的正弦值为.18.在中,内角,,所对的边分别为,,,且.(1)若,,求边上的角平分线长;(2)若为锐角三角形,点为的垂心,,求的取值范围.【答案】(1)(2)【解析】【分析】(1)先根据平方关系及正弦定理化角为边,再利用余弦定理求出;利用余弦定理求出,再由等面积法计算可得答案;(2)延长交于,延长交于,设,分别求出、,再根据三角恒等变换化,结合正切函数的性质即可得解.【小问1详解】因为,,所以,由正弦定理得,即,由余弦定理得,因为,所以;又因为,,所以,即,解得,设边上的角平分线长为,则,即,即,解得,即边上的角平分线长为;【小问2详解】延长交于,延长交于,设,所以,在中,在中,,,所以,在中,同理可得在中,所以,因为,所以,所以,所以,即的取值范围为.19.在平面直角坐标系中,图形上任意两点间的距离若有最大值,将这个最大值记为对于点和图形给出如下定义:点是图形上任意一点,若,两点间的距离有最小值,且最小值恰好为,则称点为图形的“关联点”.(1)如图1,图形是矩形,其中点的坐标为,点的坐标为,求出的值.在点,,,中,哪些点为矩形的“关联点”?(2)如图2,图形是中心在原点的正方形,其中点的坐标为若直线上存在点,使点为正方形的“关联点”,求的取值范围;(3)已知点,图形是以为圆心,1为半径的若线段上存在点,使点为的“关联点”,求的取值范围.【答案】(1),是关联点;(2);(3).【解析】【分析】(1)先求出,再分别求出,,,到矩形中的点的距离最小值,根据定义判断即可;(2)根据图形是中心在原点的正方形,其中点的坐标为,写出,,的坐标,同时得到正方形的边长和对角线长,从而得到,根据直线与对角线平行,设,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论