版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届陕西省西安市新城区西安中学高一上数学期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则等于()A. B.C. D.2.已知全集U=R,集合,,则集合()A. B.C. D.3.已知函数,若函数有4个零点,则的取值范围为()A. B.C. D.4.已知函数,若函数在上有3个零点,则m的取值范围为()A. B.C. D.5.已知直线及三个互不重合的平面,,,下列结论错误的是()A.若,,则 B.若,,则C.若,,则 D.若,,,则6.2019年7月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N随时间t(单位:年)的衰变规律满足(表示碳14原有的质量).经过测定,良渚古城遗址文物样本中碳14的质量是原来的至,据此推测良渚古城存在的时期距今约()年到5730年之间?(参考数据:,)A.4011 B.3438C.2865 D.22927.已知,且,则的最小值为A. B.C. D.8.已知直线和互相平行,则实数等于()A.或3 B.C. D.1或9.已知函数为定义在上的偶函数,在上单调递减,并且,则实数的取值范围是()A. B.C. D.10.已知向量,,则向量与的夹角为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数最大值为__________12.某种商品在第天的销售价格(单位:元)为,第x天的销售量(单位:件)为,则第14天该商品的销售收入为________元,在这30天中,该商品日销售收入的最大值为________元.13.已知长方体的8个顶点都在球的球面上,若,,,则球的表面积为___________.14.直线,当变动时,所有直线都通过定点______.15.若,,,则的最小值为____________.16.函数的最大值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(为常数)是奇函数(1)求的值;(2)判断函数在上的单调性,并予以证明18.计算:19.自新冠疫情爆发以来,全球遭遇“缺芯”困境,同时以美国为首的西方国家对中国高科技企业进行打压及制裁.在这个艰难的时刻,我国某企业自主研发了一款具有自主知识产权的平板电脑,并从2021年起全面发售.经测算,生产该平板电脑每年需投入固定成本1350万元,每生产x(千台)电脑需要另投成本(万元),且,另外,每台平板电脑售价为0.6万元,假设每年生产的平板电脑能够全部售出.已知2021年共售出10000台平板电脑,企业获得年利润为1650万元(1)求企业获得年利润(万元)关于年产量x(千台)的函数关系式;(2)当年产量为多少(千台)时,企业所获年利润最大?并求最大年利润20.已知函数(1)求的单调区间及最大值(2)设函数,若不等式在上恒成立,求实数的取值范围21.设函数f(x)的定义域为I,对于区间,若,x2∈D(x1<x2)满足f(x1)+f(x2)=1,则称区间D为函数f(x)的V区间(1)证明:区间(0,2)是函数的V区间;(2)若区间[0,a](a>0)是函数的V区间,求实数a的取值范围;(3)已知函数在区间[0,+∞)上的图象连续不断,且在[0,+∞)上仅有2个零点,证明:区间[π,+∞)不是函数f(x)的V区间
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用换元法设,则,然后利用三角函数的诱导公式进行化简求解即可【详解】设,则,则,则,故选:2、D【解析】依次计算集合,最后得出结果即可.【详解】,,或,故.故选:D.3、C【解析】转化为两个函数交点问题分析【详解】即分别画出和的函数图像,则两图像有4个交点所以,即故选:C4、A【解析】画出函数图像,分解因式得到,有一个解故有两个解,根据图像得到答案.【详解】画出函数的图像,如图所示:当时,即,有一个解;则有两个解,根据图像知:故选:【点睛】本题考查了函数的零点问题,画出函数图像,分解因式是解题的关键.5、B【解析】对A,可根据面面平行的性质判断;对B,平面与不一定垂直,可能相交或平行;对C,可根据面面平行的性质判断;对D,可通过在平面,中作直线,推理判断.【详解】解:对于选项A:根据面面平行的性质可知,若,,则成立,故选项A正确,对于选项B:垂直于同一平面的两个平面,不一定垂直,可能相交或平行,故选项B错误,对于选项C:根据面面平行的性质可知,若,,则成立,故选项C正确,对于选项D:若,,,设,,在平面中作一条直线,则,在平面中作一条直线,则,,,又,,,故选项D正确,故选:B.6、A【解析】由已知条件可得,两边同时取以2为底的对数,化简计算可求得答案【详解】因为碳14的质量是原来的至,所以,两边同时取以2为底的对数得,所以,所以,则推测良渚古城存在的时期距今约在4011年到5730年之间.故选:A.7、C【解析】运用乘1法,可得由x+y=(x+1)+y﹣1=[(x+1)+y]•()﹣1,化简整理再由基本不等式即可得到最小值【详解】由x+y=(x+1)+y﹣1=[(x+1)+y]•1﹣1=[(x+1)+y]•2()﹣1=2(21≥3+47当且仅当x,y=4取得最小值7故选C【点睛】本题考查基本不等式的运用:求最值,注意乘1法和满足的条件:一正二定三等,考查运算能力,属于中档题8、A【解析】由两直线平行,得到,求出,再验证,即可得出结果.详解】∵两条直线和互相平行,∴,解得或,若,则与平行,满足题意;若,则与平行,满足题意;故选:A9、D【解析】利用函数的奇偶性得到,再解不等式组即得解.【详解】解:由题得.因为在上单调递减,并且,所以,所以或.故选:D10、C【解析】结合平面向量线性运算的坐标表示求出,然后代入模长公式分别求出和,进而根据平面向量的夹角公式即可求出夹角的余弦值,进而求出结果.【详解】,,,,从而,且,记与的夹角为,则又,,故选:二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】分析:利用复合函数的性质求已知函数的最大值.详解:由题得当=1时,函数取最大值2×1+1=3.故答案为3.点睛:本题主要考查正弦型函数的最大值,意在考查学生对该基础知识的掌握水平.12、①.448②.600【解析】销售价格与销售量相乘即得收入,对分段函数,可分段求出最大值,然后比较.【详解】由题意可得(元),即第14天该商品的销售收入为448元.销售收入,,即,.当时,,故当时,y取最大值,,当时,易知,故当时,该商品日销售收入最大,最大值为600元.故答案为:448;600.【点睛】本题考查分段函数模型的应用.根据所给函数模型列出函数解析式是基本方法.13、【解析】求得长方体外接球的半径,从而求得球的表面积.【详解】由题知,球O的半径为,则球O的表面积为故答案为:14、(3,1)【解析】将直线方程变形为,得到,解出,即可得到定点坐标.【详解】由,得,对于任意,式子恒成立,则有,解出,故答案为:(3,1).【点睛】本题考查直线过定点问题,直线一定过两直线、的交点.15、9【解析】“1”的代换法去求的最小值即可.【详解】(当且仅当时等号成立)则的最小值为9故答案为:916、【解析】利用二倍角余弦公式,把问题转化为关于的二次函数的最值问题.【详解】,又,∴函数的最大值为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)1;(2)函数在上是减函数,证明见详解.【解析】(1)利用,化简后可求得的值.(2)利用单调性的定义,令,计算判断出在上函数为减函数.再根据复合函数同增异减,可判断得在上的单调性.【详解】(1)∵是奇函数,∴,即,即,解得或(舍去),故的值为1(2)函数在上是减函数证明:由(1)知,设,任取,∴,∵,,,∴,∴在上为减函数,又∵函数在上为增函数,∴函数在上为减函数【点睛】本题考查由对数型函数的奇偶性求参数值,以及利用单调性定义证明函数单调性,属综合中档题.18、109【解析】化根式为分数指数幂,运用有理数指数幂的运算性质化简可求出值.【详解】原式=()6+1=22×33+2﹣1=108+2﹣1=109【点睛】本题考查根式的概念,将根式化为分数指数幂和其运算法则的应用,属于基础题.19、(1)(2)当年产量为100(千台)时,企业所获年利润最大,最大年利润为万元.【解析】(1)根据2021年共售出10000台平板电板电脑,企业获得年利润为1650万元,求出,进而求出(万元)关于年产量x(千台)的函数关系式;(2)分别求出与所对应的函数关系式的最大值,比较后得到答案.【小问1详解】10000台平板电脑,即10千台,此时,根据题意得:,解得:,故当时,,当时,,综上:;【小问2详解】当时,,当时,取得最大值,;当时,,当且仅当,即时,等号成立,,因为,所以当年产量为100(千台)时,企业所获年利润最大,最大年利润为万元.20、(1)单调递增区间为,单调递减区间为;(2)【解析】(1)首先确定的定义域,将其整理为,利用复合函数单调性的判断方法得到单调性,结合单调性可求得最值;(2)根据对数函数单调性可将恒成立不等式转化为,采用分离变量法可得,结合对勾函数单调性可求得,由此可得结果.【小问1详解】由得:,的定义域为;,令,则在上单调递增,在上单调递减,又在定义域内单调递增,由复合函数单调性可知:的单调递增区间为,单调递减区间为;由单调性可知:.【小问2详解】在上恒成立,,即,在上恒成立,;令,则在上单调递增,在上单调递减,,,即实数的取值范围为.【点睛】关键点点睛:本题考查对数型复合函数单调性和最值的求解、恒成立问题的求解;求解恒成立问题的关键是能够将对数函数值之间的大小关系转化为一元二次不等式在区间内恒成立问题的求解,进而可采用分离变量的方法或讨论二次函数图象的方式来进行求解.21、(1)证明详见解析;(2)a>1;(3)证明详见解析.【解析】(1)取特殊点可以验证;(2)利用的单调递减可以求实数a的取值范围;(3)先证f(x)在上存在零点,然后函数在区间[0,+∞)上仅有2个零点,f(x)在[π,+∞)上不存在零点,利用定义说明区间[π,+∞)不是函数f(x)的V区间.详解】(1)设x1,x2∈(0,2)(x1<x2)若f(x1)+f(x2)=1,则所以lgx1+lgx2=lgx1x2=0,x1x2=1,取,,满足定义所以区间(0,2)是函数的V区间(2)因为区间[0,a]是函数的V区间,所以,x2∈[0,a](x1<x2)使得因为在[0,a]上单调递减所以,,所以,a-1>0,a>1故所求实数a的取值范围为a>1(3)因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中医饮食护理在疾病康复中的作用
- 信息安全管理要点探讨
- 2026年高级会计实务操作技能测试题
- 2026年电子商务运营高级经理考试题集及答案
- 2026年计算机网络安全网络攻击与防御策略题集
- 2026年网络安全工程师认证题库网络安全协议解析202X年度考试题集
- 2026年化学实验室安全操作标准化模拟考试
- 2026年营销策略市场分析与消费者行为试题
- 2026年企业文化与团队建设基础试题
- 2026年金融风险管理与防控测试题库
- 养老院电气火灾培训课件
- 对外话语体系构建的叙事话语建构课题申报书
- 马年猜猜乐(马的成语)打印版
- 精神障碍防治责任承诺书(3篇)
- 2025年担保公司考试题库(含答案)
- 2025年金融控股公司行业分析报告及未来发展趋势预测
- 质量控制计划模板全行业适用
- 实施指南(2025)《HG-T3187-2012矩形块孔式石墨换热器》
- 人教版PEP五年级英语下册单词表与单词字帖 手写体可打印
- 家具制造厂家授权委托书
- 中日友好医院公开招聘工作人员3人笔试参考题库(共500题)答案详解版
评论
0/150
提交评论