版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省楚雄州牟定一中2026届高一上数学期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在空间直角坐标系中,已知球的球心为,且点在球的球面上,则球的半径为()A.4 B.5C.16 D.252.函数(且)的图象恒过定点,若点在直线上,其中,则的最大值为A. B.C. D.3.已知函数在上是增函数,则实数的取值范围是A. B.C. D.4.直三棱柱中,若,则异面直线与所成角的余弦值为A.0 B.C. D.5.已知,则的最小值是()A.5 B.6C.7 D.86.设、、依次表示函数,,的零点,则、、的大小关系为()A. B.C. D.7.已知函数,若(其中.),则的最小值为()A. B.C.2 D.48.已知集合,,则()A. B.C. D.9.函数的图像大致为A. B.C. D.10.若幂函数的图象经过点,则的值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.给定函数y=f(x),设集合A={x|y=f(x)},B={y|y=f(x)}.若对于∀x∈A,∃y∈B,使得x+y=0成立,则称函数f(x)具有性质P.给出下列三个函数:①;②;③y=lgx.其中,具有性质P的函数的序号是_____12.已知,,则的最大值为______;若,,且,则______.13.函数的最大值为___________.14.不等式的解集是___________.(用区间表示)15.已知奇函数f(x),当x>0,fx=x216.角的终边经过点,则的值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)求及;(2)若,,求的值.18.已知函数(1)求函数的对称中心和单调递减区间;(2)若将函数的图象上每一点向右平移个单位得到函数的图象,求函数在区间上的值域19.已知函数,(为常数).(1)当时,判断在的单调性,并用定义证明;(2)若对任意,不等式恒成立,求的取值范围;(3)讨论零点的个数.20.已知直线l:与x轴交于A点,动圆M与直线l相切,并且和圆O:相外切求动圆圆心M的轨迹C的方程若过原点且倾斜角为的直线与曲线C交于M、N两点,问是否存在以MN为直径的圆过点A?若存在,求出实数m的值;若不存在,说明理由21.如图,四棱锥的底面是菱形,,平面,是的中点.(1)求证:平面平面;(2)棱上是否存在一点,使得平面?若存在,确定的位置并加以证明;若不存在,请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据空间中两点间距离公式,即可求得球的半径.【详解】球的球心为,且点在球的球面上,所以设球的半径为则.故选:B【点睛】本题考查了空间中两点间距离公式的简单应用,属于基础题.2、D【解析】∵由得,∴函数(且)的图像恒过定点,∵点在直线上,∴,∵,当且仅当,即时取等号,∴,∴最大值为,故选D【名师点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误3、A【解析】当时,在上是增函数,且恒大于零,即当时,在上是减函数,且恒大于零,即,因此选A点睛:1.复合函数单调性的规则若两个简单函数的单调性相同,则它们的复合函数为增函数;若两个简单函数的单调性相反,则它们的复合函数为减函数.即“同增异减”
函数单调性的性质(1)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数,更进一步,即增+增=增,增-减=增,减+减=减,减-增=减;(2)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反4、A【解析】连接,在正方形中,,又直三棱柱中,,即,所以面.所以,所以面,面,所以,即异面直线与所成角为90°,所以余弦值为0.故选A.5、C【解析】,根据结合基本不等式即可得出答案.【详解】解:,因为,又,所以,则,当且仅当,即时,取等号,即的最小值是7.故选:C6、D【解析】根据题意可知,的图象与的图象的交点的横坐标依次为,作图可求解.【详解】依题意可得,的图象与的图象交点的横坐标为,作出图象如图:由图象可知,,故选:D【点睛】本题主要考查了幂函数、指数函数、对数函数的图象,函数零点,数形结合的思想,属于中档题.7、B【解析】根据二次函数的性质及对数的运算可得,利用均值不等式求最值即可.详解】,由,,即,,当且仅当,即时等号成立,故选:B8、B【解析】直接利用交集运算法则得到答案.【详解】,,则故选:【点睛】本题考查了交集的运算,属于简单题.9、A【解析】详解】由得,故函数的定义域为又,所以函数为奇函数,排除B又当时,;当时,.排除C,D.选A10、C【解析】由已知可得,即可求得的值.【详解】由已知可得,解得.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、①③【解析】A即为函数的定义域,B即为函数的值域,求出每个函数的定义域及值域,直接判断即可【详解】对①,A=(﹣∞,0)∪(0,+∞),B=(﹣∞,0)∪(0,+∞),显然对于∀x∈A,∃y∈B,使得x+y=0成立,即具有性质P;对②,A=R,B=(0,+∞),当x>0时,不存在y∈B,使得x+y=0成立,即不具有性质P;对③,A=(0,+∞),B=R,显然对于∀x∈A,∃y∈B,使得x+y=0成立,即具有性质P;故答案为:①③【点睛】本题以新定义为载体,旨在考查函数的定义域及值域,属于基础题12、①.14②.10【解析】根据数量积的运算性质,计算的平方即可求出最大值,两边平方,可得,计算的平方即可求解.【详解】,当且仅当同向时等号成立,所以,即的最大值为14,由两边平方可得:,所以,所以,即.故答案为:14;10【点睛】本题主要考查了数量积的运算性质,数量积的定义,考查了运算能力,属于中档题.13、【解析】根据二次函数的性质,结合给定的区间求最大值即可.【详解】由,则开口向上且对称轴为,又,∴,,故函数最大值为.故答案为:.14、【解析】根据一元二次不等式解法求不等式解集.【详解】由题设,,即,所以不等式解集为.故答案为:15、-10【解析】根据函数奇偶性把求f-2的值,转化成求f2【详解】由f(x)为奇函数,可知f-x=-f又当x>0,fx=故f故答案为:-1016、【解析】以三角函数定义分别求得的值即可解决.【详解】由角的终边经过点,可知则,,所以故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)应用二倍角正切公式求,由和角正切公式求.(2)根据已知角的范围及函数值,结合同角三角函数的平方关系求,,进而应用和角正弦公式求.【小问1详解】,.【小问2详解】,.,..18、(1)对称中心为,单调递减区间为(2)【解析】(1)由倍角公式以及辅助角公式化简函数,然后由正弦函数的对称中心以及单调递减区间求出函数的对称中心和单调递减区间;(2)由函数的图像向右平移个单位得到函数的解析式,再由,得到,求出函数在区间的值域,即可得到函数在区间上的值域【详解】解(1)令,得:,∴的对称中心为,由,得:,∴的单调区间为(2)由题意:∵∴∴∴的值域为【点睛】本题主要考查了正弦型函数对称中心、单调性以及在给定区间的值域,属于中档题.19、(1)见解析;(2);(3)见解析.【解析】(1)利用函数的单调性的定义,即可证得函数的单调性,得到结论;(2)由得,转化为,设,利用二次函数的性质,即可求解.(3)把函数有个零点转化为方程有两个解,令,作的图像及直线图像,结合图象,即可求解,得到答案.【详解】(1)当时,且时,是单调递减的.证明:设,则又且,故当时,在上是单调递减的.(2)由得,变形为,即,设,令,则,由二次函数的性质,可得,所以,解得.(3)由有个零点可得有两个解,转化为方程有两个解,令,作的图像及直线图像有两个交点,由图像可得:i)当或,即或时,有个零点.ii)当或或时,由个零点;iii)当或时,有个零点.【点睛】本题主要考查了函数的单调性的判定,以及函数与方程的综合应用,其中解答中熟记函数的单调性的定义,以及合理分离参数和转化为图象的交点个数,结合图象求解是解答的关键,着重考查了转化思想,以及分类讨论思想的应用,试题有一定的综合性,属于中档试题.20、(1)()(2)存在,【解析】(1)设出动圆圆心坐标,由动圆圆心到切线的距离等于动圆与定圆的圆心距减定圆的半径列式求解动圆圆心的轨迹方程;(2)求出过原点且倾斜角为的直线方程,和曲线C联立后利用根与系数关系得到M,N的横纵坐标的和与积,由,得列式求解m的值,结合m的范围说明不存在以MN为直径的圆过点A试题解析:(1)设动圆圆心为,则,化简得(),这就是动圆圆心的轨迹的方程.(2)直线的方程为,代入曲线的方程得显然.设,,则,,而若以为直径的圆过点,则,∴由此得∴,即.解得(舍去)故存在以为直径的圆过点点睛:本题考查了轨迹方程的求法,考查了直线与圆锥曲线的关系,训练了利用数量积判断两个向量的垂直关系,考查了学生的计算能力.21、(1)见解析(2)点为的中点【解析】(1)证面面垂直,可先由线面垂直入手即,进而得到面面垂直;(2)通过构造平行四边形,得到线面平行.解析:(1)连接,因为底面是菱形,,所以为正三角形.因为是的中点,所以,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 赣南医学院《幼儿心理辅导》2023-2024学年第二学期期末试卷
- 武汉职业技术学院《影视摄影与剪辑技术》2023-2024学年第二学期期末试卷
- 河南中医药大学《地理信息系统开发与实现》2023-2024学年第二学期期末试卷
- 石河子大学《生态工程设计与制图》2023-2024学年第二学期期末试卷
- 邢台应用技术职业学院《豫南传统音乐》2023-2024学年第二学期期末试卷
- 潍坊护理职业学院《医学免疫学技术》2023-2024学年第二学期期末试卷
- 2026辽宁鞍山高一上学期1月期末地理试卷+答案
- 云南省昆明市2026届高三三诊一模摸底诊断测试物理试卷(含答案)
- 增强现实服务合同
- 公司报销流程制度
- 村社长考核管理办法
- 儿童颅咽管瘤临床特征与术后复发风险的深度剖析-基于151例病例研究
- 防潮墙面涂装服务合同协议
- GB/T 15237-2025术语工作及术语科学词汇
- 外卖跑腿管理制度
- 冷链物流配送合作协议
- 生物-江苏省苏州市2024-2025学年第一学期学业质量阳光指标调研卷暨高二上学期期末考试试题和答案
- 2024年人教版一年级数学下册教学计划范文(33篇)
- 成都随迁子女劳动合同的要求
- 万象城项目总承包述标汇报
- 小学英语完形填空训练100篇含答案
评论
0/150
提交评论