版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届安徽省”皖南八校“联盟数学高二上期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的左、右焦点分别为,,直线过且与椭圆相交于不同的两点,、不在轴上,那么△的周长()A.是定值B.是定值C.不是定值,与直线的倾斜角大小有关D.不是定值,与取值大小有关2.双曲线的焦点到渐近线的距离为()A.1 B.2C. D.3.若直线与双曲线相交,则的取值范围是A. B.C. D.4.已知椭圆=1(a>b>0)的右焦点为F,椭圆上的A,B两点关于原点对称,|FA|=2|FB|,且·≤a2,则该椭圆离心率的取值范围是()A.(0,] B.(0,]C.,1) D.,1)5.曲线在点处的切线方程为()A. B.C. D.6.已知空间向量,,,则()A.4 B.-4C.0 D.27.直线的倾斜角的大小为()A. B.C. D.8.阿波罗尼斯约公元前年证明过这样一个命题:平面内到两定点距离之比为常数且的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A,B间的距离为2,动点P与A,B距离之比满足:,当P、A、B三点不共线时,面积的最大值是()A. B.2C. D.9.已知的周长为,顶点、的坐标分别为、,则点的轨迹方程为()A. B.C. D.10.过抛物线C:的准线上任意一点作抛物线的切线,切点为,若在轴上存在定点,使得恒成立,则点的坐标为()A. B.C. D.11.若,(),则,的大小关系是A. B.C. D.,的大小由的取值确定12.已知椭圆和双曲线有共同的焦点,分别是它们的在第一象限和第三象限的交点,且,记椭圆和双曲线的离心率分别为,则等于()A.4 B.2C.2 D.3二、填空题:本题共4小题,每小题5分,共20分。13.在下列所示电路图中,下列说法正确的是____(填序号)(1)如图①所示,开关A闭合是灯泡B亮的充分不必要条件;(2)如图②所示,开关A闭合是灯泡B亮的必要不充分条件;(3)如图③所示,开关A闭合是灯泡B亮的充要条件;(4)如图④所示,开关A闭合是灯泡B亮的必要不充分条件14.如图,图形中的圆是正方形的内切圆,点E,F,G,H为对角线与圆的交点,若向正方形内随机投入一点,则该点落在阴影部分区域内的概率为_________15.在一村庄正西方向处有一台风中心,它正向东北方向移动,移动速度的大小为,距台风中心以内的地区将受到影响,若台风中心的这种移动趋势不变,则村庄所在地大约有_______小时会受到台风的影响.(参考数据:)16.经过点作直线,直线与连接两点线段总有公共点,则直线的斜率的取值范围是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角,,所对的边分别为,,,其外接圆半径为,已知(1)求角;(2)若边的长是该边上高的倍,求18.(12分)已知是函数的一个极值点.(1)求实数的值;(2)求函数在区间上的最大值和最小值.19.(12分)已知椭圆经过点,椭圆E的一个焦点为.(1)求椭圆E的方程;(2)若直线l过点且与椭圆E交于两点.求的最大值.20.(12分)在中,角A,B,C的对边分别为a,b,c,且求A和B的大小;若M,N是边AB上的点,,求的面积的最小值21.(12分)在三棱柱中,侧面正方形的中心为点平面,且,点满足(1)若平面,求的值;(2)求点到平面的距离;(3)若平面与平面所成角的正弦值为,求的值22.(10分)已知函数.(1)求函数的单调区间;(2)求函数在上的最大值和最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由直线过且与椭圆相交于不同的两点,,且,为椭圆两焦点,根据椭圆的定义即可得△的周长为,则答案可求【详解】椭圆,椭圆的长轴长为,∴△的周长为故选:B2、A【解析】分别求出双曲线的焦点坐标和渐近线方程,利用点到直线的距离公式求出结果【详解】双曲线中,焦点坐标为渐近线方程为:∴双曲线的焦点到渐近线的距离故选:A3、C【解析】联立直线和双曲线的方程得到,即得的取值范围.【详解】联立直线和双曲线的方程得当,即时,直线和双曲线的渐近线重合,所以直线与双曲线没有公共点.当,即时,,解之得.故选:C.【点睛】本题主要考查直线和双曲线的位置关系,意在考查学生对这些知识的掌握水平和分析推理能力.4、B【解析】如图设椭圆的左焦点为E,根据题意和椭圆的定义可知,利用余弦定理求出,结合平面向量的数量积计算即可.【详解】由题意知,如图,设椭圆的左焦点为E,则,因为点A、B关于原点对称,所以四边形为平行四边形,由,得,,在中,,所以,由,得,整理,得,又,所以.故选:B5、A【解析】利用切点和斜率求得切线方程.【详解】由,有曲线在点处的切线方程为,整理为故选:A6、A【解析】根据空间向量平行求出x,y,进而求得答案.【详解】因为,所以存在实数,使得,则.故选:A.7、B【解析】由直线方程,可知直线的斜率,设直线的倾斜角为,则,又,所以,故选8、C【解析】根据给定条件建立平面直角坐标系,求出点P的轨迹方程,探求点P与直线AB的最大距离即可计算作答.【详解】依题意,以线段AB的中点为原点,直线AB为x轴建立平面直角坐标系,如图,则,,设,因,则,化简整理得:,因此,点P的轨迹是以点为圆心,为半径的圆,点P不在x轴上时,与点A,B可构成三角形,当点P到直线(轴)的距离最大时,的面积最大,显然,点P到轴的最大距离为,此时,,所以面积的最大值是故选:C9、D【解析】分析可知点的轨迹是除去长轴端点的椭圆,求出、的值,结合椭圆焦点的位置可得出顶点的轨迹方程.【详解】由已知可得,,且、、三点不共线,故点的轨迹是以、为焦点,且除去长轴端点的椭圆,由已知可得,得,,则,因此,点的轨迹方程为.故选:D.10、D【解析】设切点,点,联立直线的方程和抛物线C的准线方程可得,将问题转化为对任意点恒成立,可得,解出,从而求出答案【详解】设切点,点由题意,抛物线C的准线,且由,得,则直线的方程为,即,联立令,得由题意知,对任意点恒成立,也就是对任意点恒成立因为,,则,即对任意实数恒成立,所以,即,所以,故选:D【点睛】一般表示抛物线的切线方程时可将抛物线方程转化为函数解析式,可利用导数的几何意义求解切线斜率,再代入计算.11、A【解析】∵且,∴,又,∴,故选A.12、A【解析】设椭圆的长半轴长为,双曲线的实半轴长为,由定义可得,,在中利用余弦定理可得,即可求出结果.【详解】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设在第一象限,根据椭圆和双曲线定义,得,,,由可得,又,在中,,即,化简得,两边同除以,得.故选:A.【点睛】关键点睛:本题考查共焦点的椭圆与双曲线的离心率问题,解题的关键是利用定义以及焦点三角形的关系列出齐次方程式进行求解.二、填空题:本题共4小题,每小题5分,共20分。13、(1)(2)(3)【解析】充分不必要条件是该条件成立时,可推出结果,但结果不一定需要该条件成立;必要条件是有结果必须有这一条件,但是有这一条件还不够;充要条件是条件和结果可以互推;条件和结果没有互推关系的是既不充分也不必要条件【详解】(1)开关闭合,灯泡亮;而灯泡亮时,开关不一定闭合,所以开关闭合是灯泡亮的充分不必要条件,选项(1)正确.(2)开关闭合,灯泡不一定亮;而灯泡亮时,开关必须闭合,所以开关闭合是灯泡亮的必要不充分条件,选项(2)正确.(3)开关闭合,灯泡亮;而灯泡亮时,开关必须闭合,所以开关闭合是灯泡亮的充要条件,选项(3)正确.(4)开关闭合,灯泡不一定亮;而灯泡亮时,开关不一定闭合,所以开关闭合是灯泡亮的既不充分也不必要条件,选项(4)错误.故答案为(1)(2)(3).14、【解析】利用几何概型概率计算公式,计算得所求概率.【详解】设正方形的边长为2,则阴影部分的面积为,故若向正方形内随机投入一点,则该点落在阴影部分区域内概率为故答案为:.15、4【解析】结合勾股定理求得正确答案.【详解】如图,设村庄为A,开始台风中心的位置为B,台风路径为直线,因为点A到直线的距离为,∴村庄所在地受到台风影响的时间约为:(小时).故答案为:本卷包括必考题和选考题两部分.第17题~第21题为必考题,每个试题考生都必须作答第22题~第23题为选考题,考生根据要求作答16、【解析】求出的斜率,结合图形可得结论【详解】,,而,因此,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)利用正弦定理将角化边,再利用余弦定理计算可得;(2)记边上的高为,不妨设,即可求出,再利用余弦定理求出,在中,记,根据锐角三角函数求出,,最后根据,利用两角和的余弦公式计算可得;【详解】解:(1)由已知条件,所以,所以所以,,由余弦定理可得,而,于是(2)记边上的高为,不妨设,则,,,所以,由余弦定理得,在中,记,则,,所以18、(1)3(2),【解析】(1)先求出函数的导数,根据极值点可得导数的零点,从而可求实数的值;(2)由(1)可得函数的单调性,从而可求最值.【小问1详解】,是的一个极值点,.,,此时,令,解剧或,令,解得,故为的极值点,故.【小问2详解】由(1)可得在上单调递增,在上单调递减,故在上为增函数,在上为减函数,.又19、(1)(2)【解析】(1)设椭圆的左,右焦点分别为,.利用椭圆的定义求出,然后求解,得到椭圆方程;(2)当直线的斜率存在时,设,,,,,联立直线与椭圆方程,利用韦达定理以及弦长公式得到弦长的表达式,再通过换元利用二次函数的性质求解最值即可【小问1详解】依题意,设椭圆的左,右焦点分别为,则,,,,椭圆的方程为【小问2详解】当直线的斜率存在时,设,,,,由得由得由,得设,则,当直线的斜率不存在时,,的最大值为20、(1),(2)【解析】利用正余弦定理化简即求解A和B的大小利用正弦定理把CN、CM表示出来,结合三角函数的性质,即可求解的面积的最小值【详解】解:,由正弦定理得:,,,可得,即;,由由余弦定理可得:,,如图所示:设,,在中由正弦定理,得,由可知,,所以:,同理,由于,故,此时故的面积的最小值为【点睛】本题考查了正余弦定理的应用,三角函数的有界限求解最值范围,考查了推理能力与计算能力,属于中档题21、(1);(2);(3)或.【解析】(1)连接ME,证明即可计算作答.(2)以为原点,的方向分别为轴正方向建立空间直角坐标系,借助空间向量计算点到平面的距离即可.(3)由(2)中空间直角坐标系,借助空间向量求平面与平面所成角的余弦即可计算作答.【小问1详解】在三棱柱中,因,即点在上,连接ME,如图,因平面面,面面,则有,而为中点,于是得为的中点,所以.【小问2详解】在三棱柱中,面面,则点到平面的距离等于点到平面的距离,又为正方形,即,而平面,以为原点,的方向分别为轴正方向建立空间直角坐标系,如图,依题意,,则,,设平面的法向量为,则,令,得,又,则到平面的距离,所以点到平面的距离为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年郑州信息工程职业学院高职单招职业适应性测试备考题库及答案详细解析
- 2026年宁波财经学院单招职业技能考试备考试题含详细答案解析
- 2026年长春信息技术职业学院单招综合素质考试备考试题含详细答案解析
- 2026年潇湘职业学院高职单招职业适应性测试备考题库及答案详细解析
- 2026年湖北中医药高等专科学校单招综合素质笔试备考题库含详细答案解析
- 2026年苏州信息职业技术学院单招职业技能考试备考题库含详细答案解析
- 2026年南昌工学院单招职业技能考试模拟试题含详细答案解析
- 2026年怀化职业技术学院高职单招职业适应性测试模拟试题及答案详细解析
- 2026年常州纺织服装职业技术学院单招综合素质考试备考试题含详细答案解析
- 2026年内蒙古北方职业技术学院高职单招职业适应性测试备考试题及答案详细解析
- 2026年及未来5年市场数据中国民间美术文化遗产行业市场竞争格局及发展趋势预测报告
- 2026西藏自治区教育考试院招聘非编工作人员11人备考考试试题及答案解析
- 江西省南昌市2025-2026学年上学期期末八年级数学试卷(含答案)
- 2026内蒙古鄂尔多斯市伊金霍洛旗九泰热力有限责任公司招聘热电分公司专业技术人员16人笔试模拟试题及答案解析
- 2025至2030中国现代物流业智慧化转型与多式联运体系构建研究报告
- 马年猜猜乐(猜地名)打印版
- 2026江苏省人民医院消化内科工勤人员招聘2人考试备考题库及答案解析
- 《大学生创新创业指导(慕课版第3版)》完整全套教学课件-1
- 2025年浙江省嘉兴市嘉善县保安员考试真题附答案解析
- AFP急性弛缓性麻痹培训课件
- GDPR框架下跨境医疗数据治理策略
评论
0/150
提交评论