版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省宜春市丰城市第九中学2026届高一数学第一学期期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.1弧度的圆心角所对的弧长为6,则这个圆心角所夹的扇形的面积是()A.3 B.6C.18 D.362.已知函数,则()A. B.3C. D.3.下列函数中为奇函数,且在定义域上是增函数是()A. B.C. D.4.如果且,则等于A.2016 B.2017C.1009 D.20185.若,则的最小值为()A. B.C. D.6.在长方体中,,则异面直线与所成角的大小是A. B.C. D.7.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为()A. B.C. D.8.圆x2+y2+2x﹣4y+1=0的半径为()A.1 B.C.2 D.49.()A B.C. D.10.若函数在R上单调递减,则实数a的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为奇函数,,则____________12.若,,,则的最小值为____________.13.若函数与函数的最小正周期相同,则实数______14.若函数y=f(x)是函数y=2x的反函数,则f(2)=______.15.若在内无零点,则的取值范围为___________.16.已知是定义在R上的偶函数,且在上单调递减,若(且),则a的取值范围为_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,只能同时满足下列三个条件中的两个:①的解集为;②;③最小值为(1)请写出这两个条件的序号,求的解析式;(2)求关于的不等式的解集.18.化简计算:(1)计算:;(2)化简:19.从某小学随机抽取100多学生,将他们的身高(单位:)数据绘制成频率分布直方图(如图).(1)求直方图中的值;(2)试估计该小学学生的平均身高;(3)若要从身高在三组内的学生中,用分层抽样的方法选取24人参加一项活动,则从身高在内的学生中选取的人数应为多少人?20.已知函数(1)求函数的对称中心和单调递减区间;(2)若将函数的图象上每一点向右平移个单位得到函数的图象,求函数在区间上的值域21.设两个非零向量与不共线,(1)若,,,求证:A,B,D三点共线;(2)试确定实数k,使和共线
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由弧长的定义,可求得扇形的半径,再由扇形的面积公式,即可求解.【详解】由1弧度的圆心角所对的弧长为6,利用弧长公式,可得,即,所以扇形的面积为.故选C.【点睛】本题主要考查了扇形的弧长公式和扇形的面积公式的应用,着重考查了计算能力,属于基础题.2、D【解析】根据分段函数的解析式,令代入先求出,进而可求出的结果.【详解】解:,则令,得,所以.故选:D.3、D【解析】结合基本初等函数的单调性及奇偶性分别检验各选项即可判断【详解】对于函数,定义域为,且,所以函数为偶函数,不符合题意;对于在定义域上不单调,不符合题意;对于在定义域上不单调,不符合题意;对于,由幂函数的性质可知,函数在定义域上为单调递增的奇函数,符合题意故选:D4、D【解析】∵f(x)满足对任意的实数a,b都有f(a+b)=f(a)•f(b),∴令b=1得,f(a+1)=f(a)•f(1),∴,所以,共1009项,所以.故选D.5、B【解析】由,根据基本不等式,即可求出结果.【详解】因为,所以,,因此,当且仅当,即时,等号成立.故选:B.6、C【解析】连接为异面直线与所成角,几何体是长方体,是,,异面直线与所成角的大小是,故选C.7、D【解析】答案:D左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案8、C【解析】将圆的方程化为标准方程即可得圆的半径.【详解】由圆x2+y2+2x﹣4y+1=0化为标准方程有:,所以圆的半径为2.故选:C【点睛】本题考查圆的一般方程与标准方程的互化,并由此得出圆的半径大小,属于基础题.9、A【解析】由根据诱导公式可得答案.【详解】故选:A10、D【解析】要保证函数在R上单调递减,需使得和都为减函数,且x=1处函数值满足,由此解得答案.【详解】由函数在R上单调递减,可得,解得,故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据奇偶性求函数值.【详解】因为奇函数,,所以.故答案为:.12、9【解析】“1”的代换法去求的最小值即可.【详解】(当且仅当时等号成立)则的最小值为9故答案为:913、【解析】求出两个函数的周期,利用周期相等,推出a的值【详解】:函数的周期是;函数的最小正周期是:;因为周期相同,所以,解得故答案为【点睛】本题是基础题,考查三角函数的周期的求法,考查计算能力14、1【解析】根据反函数的定义即可求解.【详解】由题知y=f(x)=,∴f(2)=1.故答案为:1.15、【解析】求出函数的零点,根据函数在内无零点,列出满足条件的不等式,从而求的取值范围.【详解】因为函数在内无零点,所以,所以;由,得,所以或,由,得;由,得;由,得,因为函数在内无零点,所以或或,又因为,所以取值范围为.故答案为:.16、【解析】根据偶函数的性质,结合绝对值的性质、对数函数的单调性,分类讨论,求出a的取值范围.【详解】因为已知是定义在R上的偶函数,所以由,又因为上单调递减,所以有.当时,;当时,.故答案为:【点睛】本题考查利用函数的奇偶性和单调性解不等式,考查了对数函数的单调性,考查了数学运算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)答案见解析【解析】(1)若选①②,则的解集不可能为;若选②③,,开口向下,则无最小值.只能是选①③,由函数的解集为可知,-1,3是方程的根,则,又由的最小值可知且在对称轴上取得最小值,从而解出;(2)由,即,然后对分类求解得答案;【小问1详解】选①②,则,开口向下,所以的解集不可能为;选①③,函数的解集为,,3是方程的根,所以的对称轴为,则,所以,又的最小值为,(1),解得,,所以则;选②③,,开口向下,则无最小值综上,.【小问2详解】由化简得若,则或;若,则不等式解集为R;若,则或当时,不等式的解集为或;当,则不等式解集为R;当,则不等式的解集为或18、(1)(2)【解析】(1)根据指数运算法则、对数运算法则求得结果.(2)利用诱导公式化简,结合同角商数关系即可求解.【详解】(1);(2).19、(1)(2)(3)4人【解析】(1)根据频率和为1,求出的值;(2)根据频率分布直方图,计算平均数即可(3)根据分层抽样方法特点,计算出总人数以及应抽取的人数比即可;【小问1详解】解:因为直方图中的各个矩形的面积之和为1,所以有,解得;【小问2详解】解:根据频率分布直方图,计算平均数为【小问3详解】解:由直方图知,三个区域内的学生总数为人,其中身高在内的学生人数为人,所以从身高在范围内抽取的学生人数为人;20、(1)对称中心为,单调递减区间为(2)【解析】(1)由倍角公式以及辅助角公式化简函数,然后由正弦函数的对称中心以及单调递减区间求出函数的对称中心和单调递减区间;(2)由函数的图像向右平移个单位得到函数的解析式,再由,得到,求出函数在区间的值域,即可得到函数在区间上的值域【详解】解(1)令,得:,∴的对称中心为,由,得:,∴的单调区间为(2)由题意:∵∴∴∴的值域为【点睛】本题主要考查了正弦
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年厦门华厦学院单招综合素质考试模拟试题含详细答案解析
- 构建和谐医患关系路径探索
- 消防安全手册绘画
- 2026秋招:西藏雪域天创发展投资公司面试题及答案
- 2026秋招:伟星集团试题及答案
- 2026秋招:甘肃城乡发展投资集团笔试题及答案
- 2026年重型机械租赁服务
- 仓储管理服务协议2026年合同生效
- 科技园区运营服务协议
- 睡眠训练:帮助老年人改善睡眠的方法
- 电力设计部门管理制度
- 饮片物料管理培训
- 校园保安消防培训大纲
- 2025年及未来5年中国正辛硫醇行业市场全景监测及投资战略咨询报告
- DB4403-T 377-2023 民宿消防安全管理规范
- 危险化学品运输安全手册
- GB/T 46146-2025家具五金件铰链及其部件的强度和耐久性绕垂直轴转动的铰链
- 粤教花城版音乐 钢琴独奏《雪橇》听评课记录
- 管桩供货保障方案(3篇)
- 名著导读傅雷家书
- DB36∕T 2027-2024 普通高等学校营养健康食堂建设规范
评论
0/150
提交评论