2026届云南省曲靖市陆良县第五中学高二上数学期末复习检测模拟试题含解析_第1页
2026届云南省曲靖市陆良县第五中学高二上数学期末复习检测模拟试题含解析_第2页
2026届云南省曲靖市陆良县第五中学高二上数学期末复习检测模拟试题含解析_第3页
2026届云南省曲靖市陆良县第五中学高二上数学期末复习检测模拟试题含解析_第4页
2026届云南省曲靖市陆良县第五中学高二上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届云南省曲靖市陆良县第五中学高二上数学期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线过点且与双曲线仅有一个公共点,则这样的直线有()A.1条 B.2条C.3条 D.4条2.德国数学家莱布尼茨是微积分的创立者之一,他从几何问题出发,引进微积分概念.在研究切线时认识到,求曲线的切线的斜率依赖于纵坐标的差值和横坐标的差值,以及当此差值变成无限小时它们的比值,这也正是导数的几何意义.设是函数f(x)的导函数,若,对,且.总有,则下列选项正确的是()A. B.C. D.3.把直线绕原点逆时针转动,使它与圆相切,则直线转动的最小正角度A. B.C. D.4.已知抛物线内一点,过点的直线交抛物线于,两点,且点为弦的中点,则直线的方程为()A. B.C D.5.设为坐标原点,抛物线的焦点为,为抛物线上一点.若,则的面积为()A. B.C. D.6.曲线在点处的切线过点,则实数()A. B.0C.1 D.27.已知圆与圆外切,则()A. B.C. D.8.已知双曲线的左、右焦点分别为,,P为双曲线C上一点,,直线与y轴交于点Q,若,则双曲线C的渐近线方程为()A. B.C. D.9.已知不等式的解集为,关于x的不等式的解集为B,且,则实数a的取值范围为()A. B.C. D.10.双曲线的两个焦点坐标是()A.和 B.和C.和 D.和11.如图,双曲线的左,右焦点分别为,,过作直线与C及其渐近线分别交于Q,P两点,且Q为的中点.若等腰三角形的底边的长等于C的半焦距.则C的离心率为()A. B.C. D.12.已知过点的直线与圆相切,且与直线垂直,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数据6,8,9,10,7的方差为______14.一条光线经过点射到直线上,被反射后经过点,则入射光线所在直线的方程为___________.15.已知球面上的三点A,B,C满足,,,球心到平面ABC的距离为,则球的表面积为______16.执行如图所示的程序框图,则输出的S=__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的首项,,,.(1)证明:为等比数列;(2)求数列的前项和18.(12分)已知函数.(1)当时,讨论的单调性;(2)当时,证明:.19.(12分)在平面直角坐标系xOy中,圆O以原点为圆心,且经过点.(1)求圆O的方程;(2)若直线与圆O交于两点A,B,求弦长.20.(12分)已知抛物线的焦点为,点在抛物线上,且点的纵坐标为4,(1)求抛物线的方程;(2)过点作直线交抛物线于两点,试问抛物线上是否存在定点使得直线与的斜率互为倒数?若存在求出点的坐标,若不存在说明理由21.(12分)有两位射击运动员在一次射击测试中各射靶7次,每次命中的环数如下:甲6978856乙a398964经计算可得甲、乙两名射击运动员的平均成绩是一样的(1)求实数a的值;(2)请通过计算,判断甲、乙两名射击运动员哪一位的成绩更稳定?22.(10分)已知等差数列满足(1)求的通项公式;(2)设,求数列的前n项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据直线的斜率存在与不存在,分类讨论,结合双曲线的渐近线的性质,即可求解.【详解】当直线的斜率不存在时,直线过双曲线的右顶点,方程为,满足题意;当直线的斜率存在时,若直线与两渐近线平行,也能满足与双曲线有且仅有一个公共点.综上可得,满足条件的直线共有3条.故选:C.【点睛】本题主要考查了直线与双曲线的位置关系,以及双曲线的渐近线的性质,其中解答中忽视斜率不存在的情况是解答的一个易错点,着重考查了分析问题和解答问题的能力,以及分类讨论思想的应用,属于基础题.2、C【解析】由,得在上单调递增,并且由的图象是向上凸,进而判断选项.【详解】由,得在上单调递增,因为,所以,故A不正确;对,,且,总有,可得函数的图象是向上凸,可用如图的图象来表示,由表示函数图象上各点处的切线的斜率,由函数图象可知,随着的增大,的图象越来越平缓,即切线的斜率越来越小,所以,故B不正确;,表示点与点连线的斜率,由图可知,所以C正确,同理,由图可知,故D不正确.故选:C3、B【解析】根据直线过原点且与圆相切,求出直线的斜率,再数形结合计算最小旋转角【详解】解析:由题意,设切线为,∴.∴或.∴时转动最小∴最小正角为.故选B.【点睛】本题考查直线与圆的位置关系,属于基础题4、B【解析】利用点差法求出直线斜率,即可得出直线方程.【详解】设,则,两式相减得,即,则直线方程为,即.故选:B.5、D【解析】先由抛物线方程求出点的坐标,准线方程为,再由可求得点的横坐标为4,从而可求出点的纵坐标,进而可求出的面积【详解】由题意可得点的坐标,准线方程为,因为为抛物线上一点,,所以点的横坐标为4,当时,,所以,所以的面积为,故选:D6、A【解析】由导数的几何意义得切线方程为,进而得.【详解】解:因为,,,所以,切线方程为,因为切线过点,所以,解得故选:A7、D【解析】根据两圆外切关系,圆心距离等于半径的和列方程求参数.【详解】由题设,两圆圆心分别为、,半径分别为1、r,∴由外切关系知:,可得.故选:D.8、B【解析】由题意可设且,即得a、b的数量关系,进而求双曲线C的渐近线方程.【详解】由题设,,,又,P为双曲线C上一点,∴,又,为的中点,∴,即,∴双曲线C的渐近线方程为.故选:B.9、B【解析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分离参数求解即可.【详解】由得,,解得,因为,所以所以可得在上恒成立,即在上恒成立,故只需,,当时,,故故选:B10、C【解析】由双曲线标准方程可得到焦点所在轴及半焦距的长,进而得到两个焦点坐标.【详解】双曲线中,,则又双曲线焦点在y轴,故双曲线的两个焦点坐标是和故选:C11、C【解析】先根据等腰三角形的性质得,再根据双曲线定义以及勾股定理列方程,解得离心率.【详解】连接,由为等腰三角形且Q为的中点,得,由知.由双曲线的定义知,在中,,(负值舍去)故选:C【点睛】本题考查双曲线的定义、双曲线的离心率,考查基本分析求解能力,属基础题.12、B【解析】首先由点的坐标满足圆的方程来确定点在圆上,然后求出过点的圆的切线方程,最后由两直线的垂直关系转化为斜率关系求解.【详解】由题知,圆的圆心,半径.因为,所以点在圆上,所以过点的圆的切线与直线垂直,设切线的斜率,则有,即,解得.因为直线与切线垂直,所以,解得.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】首先求出数据的平均值,再应用方差公式求它们的方差.【详解】由题设,平均值为,∴方差.故答案为:2.14、【解析】先求点关于直线的对称点,连接,则直线即为所求.【详解】设点关于直线的对称点为,则,解得,所以,又点,所以,直线的方程为:,由图可知,直线即为入射光线,所以化简得入射光线所在直线的方程:.故答案为:.15、【解析】由题意可知为直角三角形,求出外接圆的半径,可求出球的半径,然后求球的表面积.【详解】由题意,,,,则,可知,所以外接圆的半径为,因为球心到平面的距离为,所以球的半径为:,所以球的表面积为:.故答案为:.16、【解析】该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,即可求解得答案【详解】解:S=S+=S+,第一次循环,S=1+1﹣,k=2;第二次循环,S=1+1﹣,k=3;第三次循环,S=1+1,k=4;第四次循环,S=1,k=5;第五次循环,S=1+1,k=6,循环停止,输出;故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)利用等比数列的定义即可证明.(2)利用错位相减法即可求解.【小问1详解】当时,,所以:数列是公比为3的等比数列;【小问2详解】由(1)知,数列是以3为首项,以3为公比的等比数列,所以:,所以:,,所以,①所以,②①②可得.18、(1)在上单调递减,在上单调递增(2)证明见解析【解析】(1)当时,利用求得的单调区间.(2)将问题转化为证明,利用导数求得的最小值大于零,从而证得不等式成立.【小问1详解】当时,,且,又与均在上单调递增,所以在上单调递增.当时,单调递减;当时,单调递增综上,在上单调递减,在上单调递增.【小问2详解】因为,所以,要证,只需证当时,即可.,易知在上单调递增,又,所以,且,即,当时,单调递减;当时,单调递增,,所以.【点睛】在证明不等式的过程中,直接证明困难时,可考虑证明和两个不等式成立,从而证得成立.19、(1)(2)【解析】(1)根据两点距离公式即可求半径,进而得圆方程;(2)根据直线与圆的弦长公式即可求解【小问1详解】由,所以圆O的方程为;【小问2详解】由点O到直线的距离为所以弦长20、(1)(2)存在,【解析】(1)利用抛物线的焦半径公式求得点的横坐标,进而求得p,可得答案;(2)根据题意可设直线方程,和抛物线方程联立,得到根与系数的关系式,利用直线与的斜率互为倒数列出等式,化简可得结论.【小问1详解】(1)则,,,,故C的方程为:;【小问2详解】假设存在定点,使得直线与的斜率互为倒数,由题意可知,直线AB的斜率存在,且不为零,,,,,所以Δ>0y1+即或,,,则,,使得直线与的斜率互为倒数.21、(1)10;(2)甲的成绩比乙更稳定.【解析】(1)根据甲乙成绩求他们的平均成绩,由平均成绩相等列方程求参数a的值.(2)由已知数据及(1)的结果,求甲乙的方差并比较大小,即可知哪位运动员成绩更稳定.【小问1详解】由题意,甲的平均成绩为,乙的平均成绩为,又甲、乙两名射击运动

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论