版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省周口市扶沟高中2026届高二数学第一学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在空间四边形中,,,,且,则()A. B.C. D.2.算盘是中国传统计算工具,是中国人在长期使用算筹的基础上发明的,“珠算”一词最早见于东汉徐岳所撰的《数术记遗》,其中有云:“珠算控带四时,经纬三才.”北周甄鸾为此作注,大意是:把木板刻为3部分,上、下两部分是停游珠用的,中间一部分是作定位用的.下图是一把算盘的初始状态,自右向左,分别是个位、十位、百位…,上面一粒珠(简称上珠)代表5,下面一粒珠(简称下珠)是1,即五粒下珠的大小等于同组一粒上珠的大小.现在从个位和十位这两组中随机选择往下拨一粒上珠,往上拨3粒下珠,得到的数为质数(除了1和本身没有其它的约数)的概率是()A. B.C. D.3.下列关于函数及其图象的说法正确的是()A.B.最小正周期为C.函数图象的对称中心为点D.函数图象的对称轴方程为4.椭圆的焦点坐标为()A.和 B.和C.和 D.和5.若抛物线与直线:相交于两点,则弦的长为()A.6 B.8C. D.6.数学家欧拉在1765年发现,任意三角形的外心、重心、垂心位于同一条直线上,这条直线称为欧拉线.已知的顶点,,若其欧拉线的方程为,则顶点的坐标为()A. B.C. D.7.设、是向量,命题“若,则”的逆否命题是()A.若,则 B.若,则C.若,则 D.若,则8.若命题“或”与命题“非”都是真命题,则A.命题与命题都是真命题B.命题与命题都是假命题C.命题是真命题,命题是假命题D.命题是假命题,命题是真命题9.直线的倾斜角,则其斜率的取值范围为()A. B.C. D.10.直线与圆相交与A,B两点,则AB的长等于()A3 B.4C.6 D.111.已知圆与圆,则圆M与圆N的位置关系是()A.内含 B.相交C.外切 D.外离12.下列命题中正确的是()A.抛物线的焦点坐标为B.抛物线的准线方程为x=−1C.抛物线的图象关于x轴对称D.抛物线的图象关于y轴对称二、填空题:本题共4小题,每小题5分,共20分。13.设,若,则S=________.14.写出一个同时满足下列条件①②③的圆C的标准方程:__________①圆C的圆心在第一象限;②圆C与x轴相切;③圆C与圆外切15.已知等差数列的公差不为零,若,,成等比数列,则______.16.已知函数,若在定义域内有两个零点,那么实数a的取值范围为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在平面直角标系中,已知n个圆与x轴和线均相切,且任意相邻的两个圆外切,其中圆.(1)求数列通项公式;(2)记n个圆的面积之和为S,求证:.18.(12分)已知函数的图象在点处的切线与直线平行(是自然对数的底数).(1)求的值;(2)若在上恒成立,求实数的取值范围.19.(12分)已知函数.(1)求的单调区间;(2)求在区间上的最值.20.(12分)已知数列的前项和为,且.数列是等比数列,,(1)求,的通项公式;(2)求数列的前项和21.(12分)(1)已知:方程表示双曲线;:关于的不等式有解.若为真,求的取值范围;(2)已知,,.若p是q的必要不充分条件,求实数m的取值范围.22.(10分)已知点,圆.(1)若直线l过点M,且被圆C截得的弦长为,求直线l的方程;(2)设O为坐标原点,点N在圆C上运动,线段的中点为P,求点P的轨迹方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用空间向量的线性运算即可求解.【详解】..故选:A.2、B【解析】根据古典概型概率计算公式,计算出所求的概率.【详解】依题有,算盘所表示的数可能有:17,26,8,35,62,71,80,53,其中是质数的有:17,71,53,故所求事件的概率为故选:B3、D【解析】化简,利用正弦型函数的性质,依次判断,即可【详解】∵∴,A选项错误;的最小正周期为,B选项错误;令,则,故函数图象的对称中心为点,C选项错误;令,则,所以函数图象的对称轴方程为,D选项正确故选:D4、D【解析】本题是焦点在x轴的椭圆,求出c,即可求得焦点坐标.【详解】,可得焦点坐标为和.故选:D5、B【解析】由题得抛物线的焦点坐标为刚好在直线上,再联立直线和抛物线的方程,利用韦达定理和抛物线的定义求解.【详解】解:由题得.由题得抛物线的焦点坐标为刚好在直线上,设,联立直线和抛物线方程得,所以.所以.故选:B6、A【解析】设,计算出重心坐标后代入欧拉方程,再求出外心坐标,根据外心的性质列出关于的方程,最后联立解方程即可.【详解】设,由重心坐标公式得,三角形的重心为,,代入欧拉线方程得:,整理得:①的中点为,,的中垂线方程为,即联立,解得的外心为则,整理得:②联立①②得:,或,当,时,重合,舍去顶点的坐标是故选:A【点睛】关键点睛:解决本题的关键一是求出外心,二是根据外心的性质列方程.7、C【解析】利用原命题与逆否命题之间的关系可得结论.【详解】由原命题与逆否命题之间的关系可知,命题“若,则”的逆否命题是“若,则”.故选:C.8、D【解析】因为非p为真命题,所以p为假命题,又p或q为真命题,所以q为真命题,选D.9、B【解析】根据倾斜角和斜率的关系,确定正确选项.【详解】直线的倾斜角为,则斜率为,在上为增函数.由于直线的倾斜角,所以其斜率的取值范围为,即.故选:B【点睛】本小题主要考查倾斜角和斜率的关系,属于基础题.10、C【解析】根据弦长公式即可求出【详解】因为圆心到直线的距离为,所以AB的长等于故选:C11、B【解析】将两圆方程化为标准方程形式,计算圆心距,和两圆半径的和差比较,可得答案,【详解】圆,即,圆心,圆,即,圆心,则故有,所以两圆是相交的关系,故选:B12、C【解析】根据抛物线的性质逐项分析可得答案.【详解】抛物线的焦点坐标为,故A错误;抛物线的准线方程为,故B错误;抛物线的图象关于x轴对称,故C正确,D错误;故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、1007【解析】可证f(x)+f(1﹣x)=1,由倒序相加法可得所求为1007对的组合,即1007个1,可得答案【详解】解:∵函数f(x),∴f(x)+f(1﹣x)1故可得S=f()+f()…+f()=1007×1=1007,故答案为:1007点睛】本题考查倒序相加法求和,推断出f(x)+f(1﹣x)=1是解题的关键.14、(答案不唯一,但圆心坐标需满足,)【解析】首先设圆的圆心和半径,根据条件得到关于的方程组,即可求解.【详解】设圆心坐标为,由①可知,半径为,由②③可知,整理可得,当时,,,所以其中一个同时满足条件①②③的圆的标准方程是.故答案为:(答案不唯一,但圆心坐标需满足,)15、0【解析】设等差数列的公差为,,根据,,成等比数列,得到,再根据等差数列的通项公式可得结果.【详解】设等差数列的公差为,,因为,,成等比数列,所以,所以,整理得,因为,所以,所以.故答案为:0.【点睛】本题考查了等比中项,考查了等差数列通项公式基本量运算,属于基础题.16、【解析】先求定义域,再求导,针对分类讨论,结合单调性,极值,最值得到,研究其单调性及其零点,求出结果.【详解】定义域为,,当时,恒成立,在单调递减,不会有两个零点,故舍去;当时,在上,单调递增,在上,单调递减,故,又因为时,,时,,故要想在定义域内有两个零点,则,令,,,单调递增,又,故当时,.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)证明见解析.【解析】(1)由已知得,设圆分别切轴于点,过点作,垂足为.在从而有得,由等比数列的定义得数列是以为首项,为公比的等比数列.由此求得答案;(2)由(1)得再由圆的面积公式和等比数列求和公式计算可得证.【小问1详解】解:直线的倾斜角为则圆心在直线上,,设圆分别切轴于点,过点作,垂足为.在中,所以即化简得,变形得,所以是以为首项,为公比的等比数列.,.【小问2详解】解:由(1)得所以,所以.18、(1)(2)【解析】(1)求出函数的导函数,根据题意结合导数的几何意义列出方程,解之即可得解;(2)在上恒成立,即在上恒成立,从而,令,利用导数求出函数的最小值,即可求得实数的取值范围【小问1详解】解:,因为函数的图象在点处的切线与直线平行,所以,解得;【小问2详解】解:在上恒成立,即在上恒成立,,,令,则,当时,;当时,,函数在上单调递减,有上单调递增,,,即实数的取值范围是19、(1)在、上是增函数,在上是减函数;(2)在区间,上的最大值为2,最小值为【解析】(1)求导,根据导数和函数的单调性的关系即可求出单调区间;(2)根据(1)可知,函数在,、上为增函数,在上为减函数,求出端点值和极值,比较即可求出最值【小问1详解】根据题意,由于,,得到,,在、上是增函数,当时,在上是减函数;【小问2详解】由(1)可知,函数在,,上为增函数,在上为减函数,,(1),,,在区间,上的最大值为2,最小值为20、(1),(2)【解析】(1)利用求出通项公式,根据已知求出公比即可得出的通项公式;(2)利用错位相减法可求解.【小问1详解】因为数列的前项和为,且,当时,,当时,,满足,所以,设等比数列的公比为,因为,,所以,解得,所以;【小问2详解】因为,,则,两式相减得,所以.21、(1)1m2;(2)(0,1]【解析】(1)由pq为真,可得p真且q假,然后分别求出p真,q假时的的取值范围,再求交集即可,(2)求得p:1x2,再由p是q的必要不充分条件,得,解不等式组可求得答案【详解】(1)因为pq为真,所以p真且q假,p真:m1m301m3,q假,则不等式无解,则402m2,所以1m2.(2)依题意,p:1x2,因p是q的必要不充分条件,于是得(不同时取等号),解得0m1,所以实数m的取值范围是(0,1].22、(1)或(2)【解析】(1)由直线被圆C截得的弦长为,求得圆心到直线的距离为,分直线的斜
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年财会领域财务主管晋级财务经理题目与解析
- 2026年网络编程基础与实战认证试题
- 2026年社交媒体营销策略社交平台运营与推广专业测试题
- 2026年紧急救援队伍协调配合与联动机制练习题
- 2026年宏观经济分析政策影响预测经济趋势预测题
- 2026年新能源技术与应用开发工程师认证题集
- 2026年初级人力资源管理师职业资格考试练习题
- 2026年环境科学考试环境污染控制知识题库
- 2026年逻辑思维训练推理分析与应用题集
- 2026年软件编程基础及算法应用题集
- 2026云南昆明市公共交通有限责任公司总部职能部门员工遴选48人笔试模拟试题及答案解析
- 2025至2030中国数字经济产业发展现状及未来趋势分析报告
- 上海市松江区2025-2026学年八年级(上)期末化学试卷(含答案)
- 导管室护理新技术
- 中国信通服务:2025算力运维体系技术白皮书
- 2026年焦作大学单招试题附答案
- 电力行业五新技术知识点梳理
- 《DLT 849.1-2004电力设备专用测试仪器通 用技术条件 第1部分:电缆故障闪测仪》专题研究报告 深度
- 餐饮业店长运营效率考核表
- 超市安全生产协议书
- 福建省漳州市2024-2025学年八年级上学期期末考试数学试卷(北师大版A卷)(含详解)
评论
0/150
提交评论