12.2 分式的乘除(第1课时)分式的乘法 教学设计(表格式)冀教版数学八年级上册_第1页
12.2 分式的乘除(第1课时)分式的乘法 教学设计(表格式)冀教版数学八年级上册_第2页
12.2 分式的乘除(第1课时)分式的乘法 教学设计(表格式)冀教版数学八年级上册_第3页
12.2 分式的乘除(第1课时)分式的乘法 教学设计(表格式)冀教版数学八年级上册_第4页
12.2 分式的乘除(第1课时)分式的乘法 教学设计(表格式)冀教版数学八年级上册_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

12.2分式的乘除第1课时分式的乘法课题第1课时分式的乘法课型新授课教学内容教材第7-9页的内容教学目标1.理解并掌握分式的乘法法则,能解决一些与分式有关的简单的实际问题,具有一定的代数化归能力.2.会运用分式的乘法法则进行运算.3.在探究分式的乘法法则的过程中,进一步体会类比的思想方法.教学重难点教学重点:分式的乘法法则.教学难点:分子和分母是多项式的乘法.教学过程备注1.复习旧知,引入课题老师:我们一起来看一道计算题,你会做吗?27学生:27老师:你能用文字来叙述出你做这道题的思路吗?学生:分子乘分子得到分子,分母乘分母得到分母。老师:对,这就是小学所学的分数的乘法,这位同学说得很好.我们大家一起来看看分数的乘法法则:两个分数相乘,分母与分母相乘的积作为积的分母,分子与分子相乘的积作为积的分子.老师:刚才我们做的是分数之间的乘法运算,那换成我们刚学过的分式,ba学生:等于bdac老师:同学们还有没有不同的答案?(让学生讨论)老师:对,分式的乘法与分数的乘法类似,那你能以:AB·CD2.类比探究,学习新知师生活动:学生分组讨论,归纳总结.并举手说出自己的总结.老师点评,并给出分式的乘法法则.【总结】分式的乘法法则文字叙述:分式与分式相乘,用分子的积作为积的分子,分母的积作为积的分母.字母表达:AB·C老师:我们通过下面的题目来巩固一下分式的乘法法则.【教材P7例1】例1计算下列各式:(学生独立完成)(1)3y2x·za;(2)解:(1)3y2x·z(2)8y23老师:同学们完成得很好.上面例题中分式的分子、分母都是单项式,如果遇到分式的分子和分母是多项式的时候又应该怎样计算呢?同学们尝试解答下面的题目.【教材P7例2】例2计算下列各式:(1)x2-4xx+3·x+3x−4;(2)老师:学生独立完成,请两名同学上台板书完成第(2)小题.[预设答案]解:(1)x2-4xx学生1:(2)a2-4a学生2:(2)a2-4a2+6a+9老师:我们一起来看看这两位同学的解法,最终答案是一样的,只是学生2的更简洁一些.谁能说一说,他们两人都是怎么运算的?学生:学生1是先算分式的乘法,再因式分解,最后约分.学生:学生2是先因式分解,然后约分,最后算分式的乘法.老师:很好,当分式的分子和分母是多项式的时候,能进行因式分解的先因式分解,然后再按照分式的乘法法则进行计算,所得结果要化成最简分式或整式.【总结】分式与分式相乘,如果分子、分母是单项式,可先将分子、分母分别相乘,然后约去公因式化为最简分式或整式;如果分子、分母都是多项式,则应先分解因式,看能否先约分,然后再相乘.老师:同学们来做一下教材P8“做一做”的题目.师生活动:学生独立完成,老师点评,指导遇到困难的同学.老师:请同学们回忆一下,我们之前学习过的积的乘方.(师生互动,老师板书)老师:根据积的乘方的规律,探索一下分式的乘方的规律.怎样计算ab2,学生:独立思考,并完成题目.[预设答案]解:(ab)²=ab老师:尝试归纳分式的乘方运算法则.师生活动:学生们分组讨论,并举手说出自己的归纳。老师点评,最后做总结.【总结】分式的乘方法则文字叙述:分式乘方要把分子、分母分别乘方.字母表达:老师:完成下面的题目.例3计算:;;.师生活动:学生独立完成,教师帮助有困难的学生,并点评.解:(1)原式=.(2)原式=.(3)原式=.3.学以致用,应用新知考点1分式的乘法【例1】计算:解:

考点2分式的乘方【例2】下列运算结果不正确的是()A.(eq\f(8a2bx2,6ab2x))2=(eq\f(4ax,3b))2=eq\f(16a2x2,9b2)B.[-(eq\f(x3,2y))2]3=-(eq\f(x3,2y))6=-eq\f(x18,64y6)C.[eq\f(y-x,(x-y)2)]3=(eq\f(1,y-x))3=eq\f(1,(y-x)3)D.(-eq\f(xn,y2n))n=eq\f(x2n,y3n)答案:D4.随堂训练,巩固新知1.教材P8练习1-2题2.备用(1)计算a3·-1a2的结果是 A.a B.a5 C.a6 D.a4答案:A(2)化简a2-aa+1·aA.1a B.a C.a+1a-1答案:B(3)计算下列各式:①eq\f(ab2,2c2)·eq\f(4cd,-3a2b2);②eq\f(x2+3x,x2-9)·eq\f(3-x,x+2);解:①eq\f(ab2,2c2)·eq\f(4cd,-3a2b2)=-eq\f(ab2·4cd,2c2·3a2b2)=-eq\f(4ab2cd,6a2b2c2)=-eq\f(2d,3ac);②eq\f(x2+3x,x2-9)·eq\f(3-x,x+2)=eq\f(x(x+3),(x+3)(x-3))·eq\f(3-x,x+2)=eq\f(x,x-3)·eq\f(-(x-3),x+2)=-eq\f(x,x+2);(4)计算下列各式:①(-eq\f(x2,y))2·(-eq\f(y2,x))3·(-eq\f(1,x))4;②eq\f((2-x)(4-x),x2-16)·(4−3xx−2)2·eq\f(x2+2x-8,(x-3)(3x-4)).解:①原式=eq\f(x4,y2)·(-eq\f(y6,x3))·eq\f(1,x4)=-eq\f(y4,x3);②原式=eq\f((x-2)(x-4),(x+4)(x-4))·eq\f((3x-4)2,(x-2)2)·eq\f((x-2)(x+4),(x-3)(3x-4))=eq\f(3x-4,x-3).5.课堂小结,自我完善(1)①分式的乘法法则:分式与分式相乘,用分子的积作为积的分子,分母的积作为积的分母.字母表述:AB·C②注意事项:在运算过程中,当分子、分母都是单项式时,可直接约分再计算;当分子、分母是多项式时,能分解因式的要先分解因式,再约分、计算.运算结果一定要化成最简分式或整式.(2)①分式的乘方法则:分式乘方要把分子、分母分别乘方.②注意:分式乘方时,要把分式的分子、分母分别加上括号.6.布置作业课本P8习题A,B组.复习学过的分数的乘法运算,为学习分式的乘法做铺垫.教师引导学生类比分数的乘法,总结出分式的乘法法则,让学生体会数学中类比思想的运用.例1中是分式的分子和分母是单项式的乘法,让学生掌握其运算步骤,先按照分式的乘法运算法则运算,然后进行约分,强调运算结果是最简分式或整式.通过比较第(2)小题的不同运算过程,让学生不仅掌握分子和分母是多项式的分式的乘法的运算过程,还能让学生体会怎么运算更快、更准.关于分式的乘法运输,总结运算步骤,提高学生的运算速度.类比整式的乘方,归纳总结分式的乘方运算法则,在过程中体会类比思想的重要.根据例3,对分式的乘方运算进行归纳总结:(1)分式乘方时,要把分式加上括号;(2)分式本身的符号也要同时乘方.分式的分子和分母是多项式时,分子、分母要分别看作一个整体进行方.能约分的先约分再乘方.在课堂上完成巩固训练,可以及时指导学习有困难的学生,让学生及时查漏补缺,巩固新知.通过小结,使学生梳理本节课所学内容,掌握本节课的核心内容.板书设计12.2分式的乘除第1课时分式的乘法提纲掣领,重点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论