版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2014年普通高等学校招生全国统一考试(新课标卷Ⅰ.文)高考数学【含答案】2/22014年普通高等学校招生全国统一考试(新课标卷Ⅰ)数学文试题第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则A. B. C. D.2.若,则A. B. C. D.3.设,则A. B. C. D.24.已知双曲线的离心率为2,则A.2 B. C. D.15.设函数的定义域为,且是奇函数,是偶函数,则下列结论中正确的是A.是偶函数 B.是奇函数 C.是奇函数 D.是奇函数6.设分别为的三边的中点,则A. B. C. D.7.在函数①,②,③,④中,最小正周期为的所有函数为A.①②③ B.①③④ C.②④ D.①③8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱9.执行下图的程序框图,若输入的分别为1,2,3,则输出的=A. B. C. D.10.已知抛物线C:的焦点为,A(x0,y0)是C上一点,,则x0=A.1 B.2 C.4 D.811.设,满足约束条件且的最小值为7,则 A.-5 B.3 C.-5或3 D.5或-312.已知函数,若存在唯一的零点,且,则的取值范围是A. B. C. D.第II卷填空题:本大题共4小题,每小题5分13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.14.甲、乙、丙三位同学被问到是否去过、、三个城市时,甲说:我去过的城市比乙多,但没去过城市;乙说:我没去过城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.15.设函数则使得成立的的取值范围是________.16.如图,为测量山高,选择和另一座山的山顶为测量观测点.从点测得点的仰角,点的仰角以及;从点测得.已知山高,则山高________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知是递增的等差数列,,是方程的根。(I)求的通项公式;(II)求数列的前项和.18.(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(I)在答题卡上作出这些数据的频率分布直方图:(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?19.(本题满分12分)如图,三棱柱中,侧面为菱形,的中点为,且平面.(I)证明:(II)若,求三棱柱的高.20.(本小题满分12分)已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(I)求的轨迹方程;(II)当时,求的方程及的面积21.(12分)设函数,曲线处的切线斜率为0(I)求b;(II)若存在使得,求a的取值范围。请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,解答时请写清题号.22.(本小题满分10分)选修4-1,几何证明选讲如图,四边形是圆O的内接四边形,的延长线与的延长线交于点,且.(I)证明:;(II)设不是圆O的直径,的中点为,且,证明:为等边三角形.23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线,直线(为参数)写出曲线的参数方程,直线的普通方程;过曲线上任意一点作与夹角为30°的直线,交于点,求的最大值与最小值.24.(本小题满分10分)选修4-5;不等式选讲若且(I)求的最小值;(II)是否存在,使得?并说明理由.2014年普通高等学校招生全国统一考试(新课标卷Ⅰ)数学文试题参考答案第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。1.【答案】:B【解析】:在数轴上表示出对应的集合,可得(-1,1),选B2.【答案】:C3.【答案】:B【解析】:,,选B4.【答案】:D【解析】:由双曲线的离心率可得,解得,选D.5.【答案】:C【解析】:设,则,∵是奇函数,是偶函数,∴,为奇函数,选C.6.【答案】:A【解析】:=,选A.7.【答案】:A【解析】:由是偶函数可知,最小正周期为,即①正确;的最小正周期也是,即②也正确;最小正周期为,即③正确;的最小正周期为,即④不正确.即正确答案为①②③,选A8.【答案】:B【解析】:根据所给三视图易知,对应的几何体是一个横放着的三棱柱.选B9.【答案】:D【解析】:输入;时:;时:;时:;时:输出.选D.10.【答案】:A【解析】:根据抛物线的定义可知,解之得.选A.11.【答案】:B【解析】:画出不等式组对应的平面区域,如图所示.在平面区域内,平移直线,可知在点A处,z取得最小值,故解之得a=-5或a=3但a=-5时,z取得最大值,故舍去,答案为a=3.选B.12.【答案】:C【解析1】:由已知,,令,得或,当时,;且,有小于零的零点,不符合题意。当时,要使有唯一的零点且>0,只需,即,.选C【解析2】:由已知,=有唯一的正零点,等价于a=3有唯一的正零根,令,则问题又等价于有唯一的正零根,即与有唯一的交点且交点在在y轴右侧,记,由,,,,要使有唯一的正零根,只需,选C第Ⅱ卷二、填空题:本大题共4小题,每小题5分13.【答案】:【解析】设数学书为A,B,语文书为C,则不同的排法共有(A,B,C),(A,C,B),(B,C,A),(B,A,C),(C,A,B),(C,B,A)共6种排列方法,其中2本数学书相邻的情况有4种情况,故所求概率为.14.【答案】:A【解析】∵丙说:三人同去过同一个城市,甲说没去过B城市,乙说:我没去过C城市∴三人同去过同一个城市应为A,∴乙至少去过A,若乙再去城市B,甲去过的城市至多两个,不可能比乙多,∴可判断乙去过的城市为A.15.【答案】:16.【答案】:150【解析】在直角三角形ABC中,由条件可得,在△MAC中,由正弦定理可得,故,在直角△MAN中,.MN=MA·sin60°=150解答题:解答应写出文字说明,证明过程或演算步骤.17.【解析】:(I)方程的两根为2,3,由题意得,,设数列的公差为d,,则,故d=,从而,所以的通项公式为:…………6分(Ⅱ)设求数列的前项和为Sn,由(Ⅰ)知,则:两式相减得所以………12分18.(本小题满分12分)【解析】:(I)…………4分(II)质量指标值的样本平均数为.质量指标值的样本方差为…10分(Ⅲ)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品“质量指标值不低于95的产品至少要占全部产品80%”的规定.…………….12分19.(本题满分12分)【解析】:(I)连结,则O为与的交点,因为侧面为菱形,所以,又平面,故平面,由于平面,故………6分(II)作OD⊥BC,垂足为D,连结AD,作OH⊥AD,垂足为H,由于BC⊥AO,BC⊥OD,故BC⊥平面AOD,所以OH⊥BC。又OH⊥AD,所以OH⊥平面ABC.因为,所以△为等边三角形,又BC=1,可得OD=,由于,所以,由OH·AD=OD·OA,且,得OH=又O为B1C的中点,所以点B1到平面ABC的距离为,故三棱柱ABC-A1B1C1的高为……….12分20.(本小题满分12分)【解析】:(I)圆C的方程可化为,所以圆心为C(0,4),半径为4.设M(x,y),则,,,由题设知,故,即由于点P在圆C的内部,所以M的轨迹方程是…………6分(Ⅱ)由(Ⅰ)可知M的轨迹是以点N(1,3)为圆心,2为半径的圆.由于|OP|=|OM|,故O在线段PM的垂直平分线上,又P在圆N上,从而ON⊥PM.因为ON的斜率为3,所以的斜率为,直线的方程为:又,到的距离为,,所以的面积为:.……………12分21.(12分)【解析】:(I),由题设知,解得b=1.……………4分(Ⅱ)f(x)的定义域为(0,+∞),由(Ⅰ)知,,(i)若,则,故当x∈(1,+∞)时,f'(x)>0,f(x)在(1,+∞)上单调递增.所以,存在≥1,使得的充要条件为,即所以(ii)若,则,故当x∈(1,)时,f'(x)<0,x∈()时,,f(x)在(1,)上单调递减,在()单调递增.所以,存在≥1,使得的充要条件为,而,所以不合题意.(ⅲ)若,则。综上,a的取值范围为:请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,解答时请写清题号.22.【解析】:.(Ⅰ)由题设知得A、B、C、D四点共圆,所以D=CBE,由已知得,CBE=E,所以D=E……………5分(Ⅱ)设BCN中点为,连接MN,则由MB=MC知MN⊥BC所以O在MN上,又AD不是圆O的直径,M为AD中点,故OM⊥AD,即MN⊥AD,所以AD//BC,故A=CBE,又CBE=E,故A=E由(Ⅰ)(1)知D=E,所以△ADE为等边三角形.……………10分23.【解析】:.(Ⅰ)曲线C的参数方程为:(为参数),直线l的普通方程为:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年项目管理专业能力测试题含敏捷开发方法
- 2026年电子商务运营与管理网络零售实务试题集
- 消防中控24小时值班制度
- 校企合作课程制度教学制度
- 无菌层流手术室制度
- 2025四川启赛微电子有限公司招聘销售内勤岗位测试笔试历年备考题库附带答案详解
- 2025嘉兴吉安吉水县水利投资有限公司招聘监控员开票员安排及通过笔试历年典型考点题库附带答案详解
- 2025南平武夷福森农林科技有限公司直聘人员招聘4人笔试历年典型考点题库附带答案详解
- 2025华润置地营销「策划大师」招募笔试历年常考点试题专练附带答案详解2套试卷
- 2025北京烁科中科信校园招聘笔试历年典型考点题库附带答案详解2套试卷
- (2025年标准)预存消费协议书
- 危险化学品基础知识概述
- 主播合作协议解除协议书
- 旅游产业股权合作协议书
- 养老院入住合同协议书
- DB32/ 4440-2022城镇污水处理厂污染物排放标准
- 文第19课《井冈翠竹》教学设计+2024-2025学年统编版语文七年级下册
- 车库使用协议合同
- 耐磨钢的应用现状及行业发展分析
- 《不在网络中迷失》课件
- 2024新人教版七年级上册英语单词字帖(衡水体)
评论
0/150
提交评论