江苏省新沂市第一学校2026届高一下数学期末统考试题含解析_第1页
江苏省新沂市第一学校2026届高一下数学期末统考试题含解析_第2页
江苏省新沂市第一学校2026届高一下数学期末统考试题含解析_第3页
江苏省新沂市第一学校2026届高一下数学期末统考试题含解析_第4页
江苏省新沂市第一学校2026届高一下数学期末统考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省新沂市第一学校2026届高一下数学期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列满足,,且,则A.4 B.5 C.6 D.82.一个扇形的弧长与面积都是3,则这个扇形圆心角的弧度数为()A. B. C. D.3.已知三个互不相等的负数,,满足,设,,则()A. B. C. D.4.已知正四棱锥的顶点均在球上,且该正四棱锥的各个棱长均为,则球的表面积为()A. B. C. D.5.设,过定点的动直线和过定点的动直线交于点,则的最大值是()A. B. C. D.6.在中,已知,且满足,则的面积为()A.1 B.2 C. D.7.在中,设角的对边分别为.若,则是()A.等腰直角三角形 B.直角三角形C.等腰三角形 D.等腰三角形或直角三角形8.已知中,,,的对边分别是,,,且,,,则边上的中线的长为()A. B.C.或 D.或9.已知,且,则()A. B.7 C. D.10.如图,给出的是的值的一个程序框图,判断框内应填入的条件是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.把函数的图像上各点向右平移个单位,再把横坐标变为原来的一半,纵坐标扩大到原来的4倍,则所得的函数的对称中心坐标为________12.如图,为测量山高,选择和另一座山的山顶为测量观测点,从点测得的仰角,点的仰角以及;从点测得;已知山高,则山高__________.13.在中,角A,B,C所对的边分别为a,b,c,,的平分线交AC于点D,且,则的最小值为________.14.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件,为了了解它们的产品质量是否存在显著差异,用分层抽样的方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=.15.方程的解集是___________16.已知a,b,x均为正数,且a>b,则____(填“>”、“<”或“=”).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列为等差数列,且满足,,数列的前项和为,且,.(Ⅰ)求数列,的通项公式;(Ⅱ)若对任意的,不等式恒成立,求实数的取值范围.18.如图,在三棱锥中,,分别为,的中点,且.(1)证明:平面;(2)若平面平面,证明:.19.已知函数.(1)求的最小正周期及单调递增区间;(2)求在区间上的最大值和最小值.20.如图,在平面直角坐标系中,点,直线,设圆的半径为1,圆心在上.(1)若圆心也在直线上,过点作圆的切线,求切线方程;(2)若圆上存在点,使,求圆心的横坐标的取值范围.21.在平面直角坐标系中,已知圆和圆.(1)若直线过点,且被圆截得的弦长为,求直线的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

利用,,依次求,观察归纳出通项公式,从而求出的值.【详解】∵数列满足,,,∴,∴,∴,,∴,∴,……,∵,,,,…….,由此归纳猜想,∴.故选B.【点睛】本题考查了一个教复杂的递推关系,本题的难点在于数列的项位于指数位置,不易化简和转化,一般的求通项方法无法解决,当遇见这种情况时一般我们就可以用“归纳”的方法处理,即通过求几项,然后观察规律进而得到结论.2、B【解析】

根据扇形的弧长与面积公式,代入已知条件即可求解.【详解】设扇形的弧长为,面积为,半径为,圆心角弧度数为由定义可得,代入解得rad故选:B【点睛】本题考查了扇形的弧长与面积公式应用,属于基础题.3、C【解析】

作差后利用已知条件变形为,可知为负数,由此可得答案.【详解】由题知.因为,,都是负数且互不相等,所以,即.故选:C【点睛】本题考查了作差比较大小,属于基础题.4、C【解析】设点在底面的投影点为,则,,平面,故,而底面所在截面圆的半径,故该截面圆即为过球心的圆,则球的半径,故球的表面积,故选C.点睛:本题考查球的内接体的判断与应用,球的表面积的求法,考查计算能力;研究球与多面体的接、切问题主要考虑以下几个方面的问题:(1)球心与多面体中心的位置关系;(2)球的半径与多面体的棱长的关系;(3)球自身的对称性与多面体的对称性;(4)能否做出轴截面.5、A【解析】

由题意知两直线互相垂直,根据直线分别求出定点与定点,再利用基本不等式,即可得出答案。【详解】直线过定点,直线过定点,又因直线与直线互相垂直,即即,当且仅当时取等号故选A【点睛】本题考查直线位置关系,考查基本不等式,属于中档题。6、D【解析】

根据正弦定理先进行化简,然后根据余弦定理求出C的大小,结合三角形的面积公式进行计算即可.【详解】在中,已知,∴由正弦定理得,即,∴==,即=.∵,∴的面积.故选D.【点睛】本题主要考查三角形面积的计算,结合正弦定理余弦定理进行化简是解决本题的关键,属于基础题.7、D【解析】

根据正弦定理,将等式中的边a,b消去,化为关于角A,B的等式,整理化简可得角A,B的关系,进而确定三角形.【详解】由题得,整理得,因此有,可得或,当时,为等腰三角形;当时,有,为直角三角形,故选D.【点睛】这一类题目给出的等式中既含有角又含有边的关系,通常利用正弦定理将其都化为关于角或者都化为关于边的等式,再根据题目要求求解.8、C【解析】

由已知利用余弦定理可得,解得a值,由已知可求中线,在中,由余弦定理即可计算AB边上中线的长.【详解】解:,由余弦定理,可得,整理可得:,解得或1.如图,CD为AB边上的中线,则,在中,由余弦定理,可得:,或,解得AB边上的中线或.故选C.【点睛】本题考查余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于基础题.9、D【解析】

由平方关系求得,再由商数关系求得,最后由两角和的正切公式可计算.【详解】,,,,.故选:D.【点睛】本题考查两角和的正切公式,考查同角间的三角函数关系.属于基础题.10、B【解析】试题分析:由题意得,执行上式的循环结构,第一次循环:;第二次循环:;第三次循环:;,第次循环:,此时终止循环,输出结果,所以判断框中,添加,故选B.考点:程序框图.二、填空题:本大题共6小题,每小题5分,共30分。11、,【解析】

根据三角函数的图象变换,求得函数的解析式,进而求得函数的对称中心,得到答案.【详解】由题意,把函数的图像上各点向右平移个单位,可得,再把图象上点的横坐标变为原来的一半,可得,把函数纵坐标扩大到原来的4倍,可得,令,解得,所以函数的对称中心为.故答案为:.【点睛】本题主要考查了三角函数的图象变换,以及三角函数的对称中心的求解,其中解答中熟练三角函数的图象变换,以及三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】在△ABC中,,,在△AMC中,,由正弦定理可得,解得,在Rt△AMN中.13、32【解析】

根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可.【详解】如图所示,则△ABC的面积为,即ac=2a+2c,得,得,当且仅当,即3c=a时取等号;∴的最小值为32.故答案为:32.【点睛】本题考查三角形中的几何计算,属于中等题.14、13【解析】(解法1)由分层抽样得,解得n=13.(解法2)从甲乙丙三个车间依次抽取a,b,c个样本,则120∶80∶60=a∶b∶3a=6,b=4,所以n=a+b+c=13.15、或【解析】

方程的根等价于或,分别求两个三角方程的根可得答案.【详解】方程或,所以或,所以或.故答案为:或.【点睛】本题考查三角方程的求解,求解时可利用单位圆中的三角函数线,注意终边相同角的表示,考查运算求解能力和数形结合思想的运用.16、<【解析】

直接利用作差比较法解答.【详解】由题得,因为a>0,x+a>0,b-a<0,x>0,所以所以.故答案为<【点睛】本题主要考查作差比较法,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)数列的通项公式,利用,可求公差,然后可求;的通项公式可以利用退位相减法求解;(Ⅱ)求出代入,利用分离参数法可求实数的取值范围.【详解】解:(Ⅰ)∵,∴,∴,即,∵,∴,∴,∴,又,也成立,∴是以1为首项,3为公比的等比数列,∴.(Ⅱ),∴对恒成立,即对恒成立,令,,当时,,当时,,∴,故,即的取值范围为.【点睛】本题主要考查数列通项公式的求解和参数范围的确定,熟练掌握公式是求解关键,侧重考查数学运算的核心素养.18、(1)见解析(2)见解析【解析】

(1)先证明,再证明平面;(2)先证明平面,再证明.【详解】证明:(1)因为,分别为,的中点,所以.又平面,平面,所以平面.(2)因为,为中点,所以.又平面平面.平面平面,所以平面.又平面,所以.【点睛】本题主要考查空间几何元素位置关系的证明,意在考查学生对这些知识的理解掌握水平,属于基础题.19、(1);单调递增区间为:;(2)最大值;最小值.【解析】

(1)先将函数化简整理,得到,由得到最小正周期;根据正弦函数的对称轴,即可列式,求出对称轴;(2)先由,得到,根据正弦函数的性质,即可得出结果.【详解】(1)因为,所以最小正周期为:;由得,即单调递增区间是:;(2)因为,所以,因此,当即时,取最小值;当即时,取最大值;【点睛】本题主要考查正弦型三角函数的周期、对称轴,以及给定区间的最值问题,熟记正弦函数的性质,以及辅助角公式即可,属于常考题型.20、(1)或;(2).【解析】

(1)两直线方程联立可解得圆心坐标,又知圆的半径为,可得圆的方程,根据点到直线距离公式,列方程可求得直线斜率,进而得切线方程;(2)根据圆的圆心在直线:上可设圆的方程为,由,可得的轨迹方程为,若圆上存在点,使,只需两圆有公共点即可.【详解】(1)由得圆心,∵圆的半径为1,∴圆的方程为:,显然切线的斜率一定存在,设所求圆的切线方程为,即.∴,∴,∴或.∴所求圆的切线方程为或.(2)∵圆的圆心在直线:上,所以,设圆心为,则圆的方程为.又∵,∴设为,则,整理得,设为圆.所以点应该既在圆上又在圆上,即圆和圆有交点,∴,由,得,由,得.综上所述,的取值范围为.考点:1、圆的标准方程及切线的方程;2、圆与圆的位置关系及转化与划归思想的应用.【方法点睛】本题主要考查圆的标准方程及切线的方程、圆与圆的位置关系及转化与划归思想的应用.属于难题.转化与划归思想是解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.本题(2)巧妙地将圆上存在点,使问题转化为,两圆有公共点问题是解决问题的关键所在.21、(1)或,(2)点P坐标为或.【解析】(1)设直线l的方程为y=k(x-4),即kx-y-4k=0.由垂径定理,得圆心C1到直线l的距离d==1,结合点到直线距离公式,得=1,化简得24k2+7

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论