江苏南通市2026届高一数学第二学期期末综合测试试题含解析_第1页
江苏南通市2026届高一数学第二学期期末综合测试试题含解析_第2页
江苏南通市2026届高一数学第二学期期末综合测试试题含解析_第3页
江苏南通市2026届高一数学第二学期期末综合测试试题含解析_第4页
江苏南通市2026届高一数学第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏南通市2026届高一数学第二学期期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知平面向量满足:,,,若,则的值为()A. B. C.1 D.-12.在中,a,b,c分别为角A,B,C的对边,若,,,则解的个数是()A.0 B.1 C.2 D.不确定3.将函数的图象向右平移个单位长度得到图象,则函数的解析式是()A. B.C. D.4.数列,…的一个通项公式是()A.B.C.D.5.点M(4,m)关于点N(n,-3)的对称点为P(6,-9)则()A.m=-3,n=10 B.m=3,n=10C.m=-3,n=5 D.m=3,n=56.在锐角中,内角,,的对边分别为,,,,,成等差数列,,则的周长的取值范围为()A. B. C. D.7.已知,满足,则()A. B. C. D.8.如果数据的平均数为,方差为,则的平均数和方差分别为()A. B. C. D.9.已知点,点是圆上任意一点,则面积的最大值是()A. B. C. D.10.若长方体三个面的面积分别为2,3,6,则此长方体的外接球的表面积等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.102,238的最大公约数是________.12.函数的初相是__________.13.已知,若角的终边经过点,求的值.14.设为使互不重合的平面,是互不重合的直线,给出下列四个命题:①②③④若;其中正确命题的序号为.15.已知向量,则的单位向量的坐标为_______.16.将函数f(x)=cos(2x)的图象向左平移个单位长度后,得到函数g(x)的图象,则下列结论中正确的是_____.(填所有正确结论的序号)①g(x)的最小正周期为4π;②g(x)在区间[0,]上单调递减;③g(x)图象的一条对称轴为x;④g(x)图象的一个对称中心为(,0).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图在四棱锥中,底面是矩形,点、分别是棱和的中点.(1)求证:平面;(2)若,且平面平面,证明平面.18.已知,.求和的值.19.已知函数(其中).(1)当时,求不等式的解集;(2)若关于的不等式恒成立,求的取值范围.20.直线经过点,且与圆相交与两点,截得的弦长为,求的方程.21.在四棱锥中,底面是平行四边形,平面,点,分别为,的中点,且,,.(1)证明:平面;(2)求直线与平面所成角的余弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

将代入,化简得到答案.【详解】故答案选C【点睛】本题考查了向量的运算,意在考查学生的计算能力.2、B【解析】

由题得,即得B<A,即得三角形只有一个解.【详解】由正弦定理得,所以B只有一解,所以三角形只有一解.故选:B【点睛】本题主要考查正弦定理判定三角形的个数,意在考查学生对这些知识的理解掌握水平,属于基础题.3、C【解析】

由题意利用三角函数的图象变换原则,即可得出结论.【详解】由题意,将函数的图象向右平移个单位长度,可得.故选C.【点睛】本题主要考查三角函数的图像变换,熟记图像变换原则即可,属于常考题型.4、D【解析】试题分析:由题意得,可采用验证法,分别令,即可作出选择,只有满足题意,故选D.考点:归纳数列的通项公式.5、D【解析】因为点M,P关于点N对称,所以由中点坐标公式可知.6、A【解析】

依题意求出,由正弦定理可得,再根据角的范围,可求出的范围,即可求得的周长的取值范围.【详解】依题可知,,由,可得,所以,即,而.∴,即.故的周长的取值范围为.故选:A.【点睛】本题主要考查正弦定理在解三角形中的应用,两角和与差的正弦公式的应用,以及三角函数的值域求法的应用,意在考查学生的转化能力和数学运算能力,属于中档题.7、A【解析】

根据对数的化简公式得到,由指数的运算公式得到=,由对数的性质得到>0,,进而得到结果.【详解】已知,=,>0,进而得到.故答案为A.【点睛】本题考查了指对函数的运算公式和对数函数的性质;比较大小常用的方法有:两式做差和0比较,分式注意同分,进行因式分解为两式相乘的形式;或者利用不等式求得最值,判断最值和0的关系.8、D【解析】

根据平均数和方差的公式,可推导出,,,的平均数和方差.【详解】因为,所以,所以的平均数为;因为,所以,故选:D.【点睛】本题考查平均数与方差的公式计算,考查对概念的理解与应用,考查基本运算求解能力.9、B【解析】

求出直线的方程,计算出圆心到直线的距离,可知的最大高度为,并计算出,最后利用三角形的面积公式可得出结果.【详解】直线的方程,且,圆的圆心坐标为,半径长为,圆心到直线的距离为,所以,点到直线的距离的最大值为,因此,面积的最大值为,故选B.【点睛】本题考查三角形面积的最值问题,考查圆的几何性质,当直线与圆相离时,若圆的半径为,圆心到直线的距离为,则圆上一点到直线距离的最大值为,距离的最小值为,要熟悉相关结论的应用.10、C【解析】

设长方体过一个顶点的三条棱长分别为,,,由已知面积求得,,的值,得到长方体对角线长,进一步得到外接球的半径,则答案可求.【详解】设长方体过一个顶点的三条棱长分别为,,,则,解得,,.长方体的对角线长为.则长方体的外接球的半径为,此长方体的外接球的表面积等于.故选:C.【点睛】本题考查长方体外接球表面积的求法,考查空间想象能力和运算求解能力,求解时注意长方体的对角线长为长方体外接球的直径.二、填空题:本大题共6小题,每小题5分,共30分。11、34【解析】试题分析:根据辗转相除法的含义,可得238=2×102+34,102=3×34,所以得两个数102、238的最大公约数是34.故答案为34.考点:辗转相除法.12、【解析】

根据函数的解析式即可求出函数的初相.【详解】,初相为.故答案为:【点睛】本题主要考查的物理意义,属于简单题.13、【解析】

由条件利用任意角的三角函数的定义,求得和的值,从而可得的值.【详解】因为角的终边经过点,所以,,则.故答案为:【点睛】本题主要考查任意角的三角函数的定义,属于基础题.14、④【解析】试题分析:根据线面平行的判定定理,面面平行的判定定理,面面平行的性质定理,及面面垂直的性质定理,对题目中的四个结论逐一进行分析,即可得到答案.解:当m∥n,n⊂α,,则m⊂α也可能成立,故①错误;当m⊂α,n⊂α,m∥β,n∥β,m与n相交时,α∥β,但m与n平行时,α与β不一定平行,故②错误;若α∥β,m⊂α,n⊂β,则m与n可能平行也可能异面,故③错误;若α⊥β,α∩β=m,n⊂α,n⊥m,由面面平行的性质,易得n⊥β,故④正确故答案为④考点:本题考查的知识点是平面与平面之间的位置关系,直线与平面之间的位置关系.点评:熟练掌握空间线与线,线与面,面与面之间的关系的判定方法及性质定理,是解答本题的关键,属于基础题.15、.【解析】

由结论“与方向相同的单位向量为”可求出的坐标.【详解】,所以,,故答案为.【点睛】本题考查单位向量坐标的计算,考查共线向量的坐标运算,充分利用共线单位向量的结论可简化计算,考查运算求解能力,属于基础题.16、②④.【解析】

利用函数的图象的变换规律求得的解析式,再利用三角函数的周期性、单调性、图象的对称性,即可求解,得到答案.【详解】由题意,将函数的图象向左平移个单位长度后,得到的图象,则函数的最小正周期为,所以①错误的;当时,,故在区间单调递减,所以②正确;当时,,则不是函数的对称轴,所以③错误;当时,,则是函数的对称中心,所以④正确;所以结论正确的有②④.【点睛】本题主要考查了三角函数的图象变换,以及三角函数的图象与性质的判定,其中解答熟记三角函数的图象变换,以及三角函数的图象与性质,准确判定是解答的关键,着重考查了推理与运算能力,属于中档试题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)见证明【解析】

(1)可证,从而得到要求证的线面平行.(2)可证,再由及是棱的中点可得,从而得到平面.【详解】(1)证明:因为点、分别是棱和的中点,所以,又在矩形中,,所以,又面,面,所以平面(2)证明:在矩形中,,又平面平面,平面平面,面,所以平面,又面,所以①因为且是的中点,所以,②由①②及面,面,,所以平面.【点睛】线面平行的证明的关键是在面中找到一条与已知直线平行的直线,找线的方法可利用三角形的中位线或平行公理.线面垂直的判定可由线线垂直得到,注意线线是相交的,而要求证的线线垂直又可以转化为已知的线面垂直(有时它来自面面垂直)来考虑.18、,【解析】

把已知等式两边平方,利用同角三角函数基本关系化简,可得的值,同时由与的值可判断出,,计算出的值,可得的值.【详解】解:,两边同时平方可得:,又,,∴∴,∴【点睛】同时主要考查同角三角函数关系式的应用,相对不难,注意运算的准确性.19、(1)或;(2).【解析】

(1)先由,将不等式化为,直接求解,即可得出结果;(2)先由题意得到恒成立,根据含绝对值不等式的性质定理,得到,从而可求出结果.【详解】(1)当时,求不等式,即为,所以,即或,原不等式的解集为或.(2)不等式,即为,即关于的不等式恒成立.而,所以,解得或,解得或.所以的取值范围是.【点睛】本题主要考查含绝对值不等式的解法,以及由不等式恒成立求参数的问题,熟记不等式的解法,以及绝对值不等式的性质定理即可,属于常考题型.20、或【解析】

直线截圆得的弦长为,结合圆的半径为5,利用勾股定理可得圆心到直线的距离,再利用点到直线的距离公式列方程求出直线斜率,由点斜式可得结果.【详解】设直线的方程为,即,因为圆的半径为5,截得的弦长为所以圆心到直线的距离,即或,∴所求直线的方程为或.【点睛】本题主要考查点到直线距离公式以及圆的弦长的求法,求圆的弦长有两种方法:一是利用弦长公式,结合韦达定理求解;二是利用半弦长,弦心距,圆半径构成直角三角形,利用勾股定理求解.21、(1)见解析(2)【解析】

(1)取中点,连接,,构造平行四边形,由线线平行得到线面平行;(2)根据线面角的定义作出线面角,在直角三角形中求出数值.【详解】(1)证明:取中点,连接

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论