版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届上海市十校数学高一下期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,则A.-1 B.1 C.ln2 D.-ln22.函数在区间(,)内的图象是()A. B. C. D.3.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.4.《九章算术》中有这样一个问题:今有竹九节,欲均减容之(其意为:使容量均匀递减),上三节容四升,下三节容二升,中三节容几何?()A.二升 B.三升 C.四升 D.五升5.下列说法不正确的是()A.圆柱的侧面展开图是一个矩形B.圆锥过轴的截面是一个等腰三角形C.平行于圆台底面的平面截圆台,截面是圆面D.直角三角形绕它的一边旋转一周形成的曲面围成的几何体是圆锥6.已知x,y∈R,且x>y>0,则()A. B.C. D.lnx+lny>07.在等差数列中,若,,则()A. B.1 C. D.8.设的三个内角成等差数列,其外接圆半径为2,且有,则三角形的面积为()A. B. C.或 D.或9.设是上的偶函数,且在上是减函数,若且,则()A. B.C. D.与大小不确定10.在中,是边上一点,,且,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.将函数f(x)=cos(2x)的图象向左平移个单位长度后,得到函数g(x)的图象,则下列结论中正确的是_____.(填所有正确结论的序号)①g(x)的最小正周期为4π;②g(x)在区间[0,]上单调递减;③g(x)图象的一条对称轴为x;④g(x)图象的一个对称中心为(,0).12.无限循环小数化成最简分数为________13.已知球的一个内接四面体中,,过球心,若该四面体的体积为,且,则球的表面积的最小值为_________.14.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为_________.15.设函数的最小值为,则的取值范围是___________.16.在长方体中,,,,如图,建立空间直角坐标系,则该长方体的中心的坐标为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求函数的最大值,以及取到最大值时所对应的的集合;(2)在上恒成立,求实数的取值范围.18.已知直线:,一个圆的圆心在轴上且该圆与轴相切,该圆经过点.(1)求圆的方程;(2)求直线被圆截得的弦长.19.已知.(1)求的值:(2)求的值.20.已知圆C的圆心为(1,1),直线与圆C相切.(1)求圆C的标准方程;(2)若直线过点(2,3),且被圆C所截得的弦长为2,求直线的方程.21.已知向量垂直于向量,向量垂直于向量.(1)求向量与的夹角;(2)设,且向量满足,求的最小值;(3)在(2)的条件下,随机选取一个向量,求的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
先把化为,再根据公式和求解.【详解】故选C.【点睛】本题考查对数、指数的运算,注意观察题目之间的联系.2、D【解析】解:函数y=tanx+sinx-|tanx-sinx|=分段画出函数图象如D图示,故选D.3、C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.点睛:古典概型中基本事件数的探求方法:(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.4、B【解析】
由题意可得,上、中、下三节的容量成等差数列.再利用等差数列的性质,求出中三节容量,即可得到答案.【详解】由题意,上、中、下三节的容量成等差数列,上三节容四升,下三节容二升,则中三节容量为,故选B.【点睛】本题主要考查了等差数列的性质的应用,其中解答中熟记等差数列的等差中项公式是解答的关键,着重考查了运算与求解能力,属于基础题.5、D【解析】
根据旋转体的定义与性质,对选项中的命题分析、判断正误即可.【详解】A.圆柱的侧面展开图是一个矩形,正确;B.∵同一个圆锥的母线长相等,∴圆锥过轴的截面是一个等腰三角形,正确;C.根据平行于圆台底面的平面截圆台截面的性质可知:截面是圆面正确;D.直角三角形绕它的一条直角边旋转一周形成的曲面围成的几何体是圆锥,而直角三角形绕它的斜边旋转一周形成的曲面围成的几何体是两个对底面的两个圆锥,因此D不正确.故选:D.【点睛】本题考查了命题的真假判断,解题的关键是理解旋转体的定义与性质的应用问题,属于基础题.6、A【解析】
结合选项逐个分析,可选出答案.【详解】结合x,y∈R,且x>y>0,对选项逐个分析:对于选项A,,,故A正确;对于选项B,取,,则,故B不正确;对于选项C,,故C错误;对于选项D,,当时,,故D不正确.故选A.【点睛】本题考查了不等式的性质,属于基础题.7、C【解析】
运用等差数列的性质求得公差d,再运用通项公式解得首项即可.【详解】由题意知,所以.故选C.【点睛】本题考查等差数列的通项公式的运用,等差数列的性质,考查运算能力,属于基础题.8、C【解析】
的三个内角成等差数列,可得角A、C的关系,将已知条件中角C消去,利用三角函数和差角公式展开即可求出角A的值,再由三角形面积公式即可求得三角形面积.【详解】的三个内角成等差数列,则,解得,所以,所以,整理得,则或,因为,解得或.①当时,;②当时,,故选C.【点睛】本题考查了三角形内角和定理、等差数列性质、三角函数和差角公式、三角函数辅助角公式,综合性较强,属于中档题;解题中主要是通过消元构造关于角A的三角方程,其中利用三角函数和差角公式和辅助角公式对式子进行化解是解题的关键.9、A【解析】试题分析:由是上的偶函数,且在上是减函数,所以在上是增函数,因为且,所以,所以,又因为,所以,故选A.考点:函数奇偶性与单调性的综合应用.【方法点晴】本题主要考查了函数的单调性与奇偶性的综合应用,其中解答中涉及函数的单调性和函数奇偶性的应用等知识点,本题的解答中先利用偶函数的图象的对称性得出在上是增函数,然后在利用题设条案件把自变量转化到区间上是解答的关键,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,试题有一定的难度,属于中档试题.10、D【解析】
根据,用基向量表示,然后与题目条件对照,即可求出.【详解】由在中,是边上一点,,则,即,故选.【点睛】本题主要考查了平面向量基本定理的应用及向量的线性运算.二、填空题:本大题共6小题,每小题5分,共30分。11、②④.【解析】
利用函数的图象的变换规律求得的解析式,再利用三角函数的周期性、单调性、图象的对称性,即可求解,得到答案.【详解】由题意,将函数的图象向左平移个单位长度后,得到的图象,则函数的最小正周期为,所以①错误的;当时,,故在区间单调递减,所以②正确;当时,,则不是函数的对称轴,所以③错误;当时,,则是函数的对称中心,所以④正确;所以结论正确的有②④.【点睛】本题主要考查了三角函数的图象变换,以及三角函数的图象与性质的判定,其中解答熟记三角函数的图象变换,以及三角函数的图象与性质,准确判定是解答的关键,着重考查了推理与运算能力,属于中档试题.12、【解析】
利用无穷等比数列求和的方法即可.【详解】.故答案为:【点睛】本题主要考查了无穷等比数列的求和问题,属于基础题型.13、【解析】
求出面积的最大值,结合棱锥的体积可得到平面距离的最小值,进一步求得球的半径的最小值得答案.【详解】解:在中,由,且,
得,得.
当且仅当时,有最大值1.
过球心,且四面体的体积为1,
∴三棱锥的体积为.
则到平面的距离为.
此时的外接圆的半径为,则球的半径的最小值为,
∴球O的表面积的最小值为.
故答案为:.【点睛】本题考查多面体外接球表面积最值的求法,考查逻辑思维能力与推理运算能力,考查空间想象能力,是中档题.14、【解析】记甲、乙两人相邻而站为事件A甲、乙、丙三人随机地站成一排的所有排法有=6,则甲、乙两人相邻而站的战法有=4种站法∴=15、.【解析】
确定函数的单调性,由单调性确定最小值.【详解】由题意在上是增函数,在上是减函数,又,∴,,故答案为.【点睛】本题考查分段函数的单调性.由单调性确定最小值,16、【解析】
先求出点B的坐标,再求出M的坐标.【详解】由题得B(4,6,0),,因为M点是中点,所以点M坐标为.故答案为【点睛】本题主要考查空间坐标的求法,意在考查学生对该知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、,,;(2)【解析】
(1).此时,(2),,即,.,,且,,即的取值范围是.18、(1);(2).【解析】
(1)由题意设圆心,半径,将点代入圆C的方程可求得a,可得圆的方程;(2)求出圆心C到直线l的距离d,利用勾股定理求出l被圆C所截得弦长.【详解】(1)∵圆心在轴上且该圆与轴相切,∴设圆心,半径,,设圆的方程为,将点代入得,∴,∴所求圆的方程为.(2)∵圆心到直线:的距离,∴直线被圆截得的弦长为.【点睛】本题考查了直线与圆的位置关系及圆的方程的应用问题,考查了垂径定理的应用,是基础题.19、(1);(2)【解析】
(1)利用平方关系、诱导公式以及诱导公式即可求解;(2)利用辅助角公式以及二倍角的正弦公式化简即可求值.【详解】(1)因为且所以;(2).【点睛】本题主要考查了三角函数的化简与求值,关键是利用诱导公式、同角三角函数的基本关系以及辅助角公式来求解,属于中档题.20、(1);(2)或.【解析】
(1)利用点到直线的距离可得:圆心到直线的距离.根据直线与圆相切,可得.即可得出圆的标准方程.(2)①当直线的斜率存在时,设直线的方程:,即:,可得圆心到直线的距离,又,可得:.即可得出直线的方程.②当的斜率不存在时,,代入圆的方程可得:,解得可得弦长,即可验证是否满足条件.【详解】(1)圆心到直线的距离.直线与圆相切,.圆的标准方程为:.(2)①当直线的斜率存在时,设直线的方程:,即:,,又,.解得:.直线的方程为:.②当的斜率不存在时,,代入圆的方程可得:,解得,可得弦长,满足条件.综上所述的方程为:或.【点睛】本题考查直线与圆的相切的性质、点到直线的距离公式、弦长公式、分类讨论方法,考查推理能力与计算能力,属于中档题.21、(1);(2);(3).【解析】
(1)根据向量的垂直,转化出方程组,求解方程组即可;(2)将向量赋予坐标,求得向量对应点的轨迹方程,将问题转化为圆外一点,到圆上一点的距离的最值问题,即可求解;(3)根据余弦定理,解得,以及的临界状态时,对应的圆心角的大小,利用几何概型的概率计算公式,即可求解.【详解】(1)因为故可得,解得①②由①-②可得,解得,将其代入①可得,即将其代入②可得解得,又向量夹角的范围为,故向量与的夹角为.(2)不妨设,由可得.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年社会学调查分析题目
- 2026年职场技能提升测试题集及答案解析
- 江苏省兴化市安丰初级中学2026届生物高一下期末质量检测模拟试题含解析
- 上海市莘庄中学2026届数学高一下期末经典模拟试题含解析
- 2026年工程师岗位竞聘专业问题解答与解决方案面试题目集
- 2026年计算机视觉算法工程师笔试题目集
- 2026年英语教育专业学生教学法与课程设计题库
- 2026年电气自动化控制技术专业试题集
- 2026年投资顾问资产配置与风险管理实操考试题
- 2026年自然地理常识及考点习题集详解
- T/TMAC 031.F-2020企业研发管理体系要求
- 简易运输合同协议书模板
- 高考英语必背600短语总结
- 防渗漏体系策划培训(中建)
- 锅炉教材模块一锅炉认知
- GB/T 34765-2024肥料和土壤调理剂黄腐酸含量及碳系数的测定方法
- 传染性疾病影像学课件
- 监狱服装加工合同范本
- HG20202-2014 脱脂工程施工及验收规范
- 广东省幼儿园一日活动指引(试行)
- (高清版)TDT 1057-2020 国土调查数据库标准
评论
0/150
提交评论