版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市莘庄中学2026届数学高一下期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知为锐角,,则()A. B. C. D.2.甲.乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度.跑步速度均相同,则()A.甲先到教室 B.乙先到教室C.两人同时到教室 D.谁先到教室不确定3.两数与的等比中项是()A.1 B.-1 C.±1 D.4.已知集合A={1,2,3,4},B={2,3,4,5},则A∩B中元素的个数是()A.1 B.2 C.3 D.45.已知两个正数a,b满足,则的最小值是(
)A.2 B.3 C.4 D.56.某部门为了了解用电量y(单位:度)与气温x(单位:°C)之间的关系,随机统计了某3天的用电量与当天气温如表所示.由表中数据得回归直线方程y=-0.8x+a,则摄氏温度(°C)4611用电量度数1074A.12.6 B.13.2 C.11.8 D.12.87.干支纪年法是中国历法上自古以来就一直使用的纪年方法,主要方式是由十天干(甲、乙、丙、丁、戊、己、废、辛、壬、朵)和十二地支(子、丑、卯、辰、已、午、未、中、百、戊、)按顺序配对,周而复始,循环记录.如:1984年是甲子年,1985年是乙丑年,1994年是甲戌年,则数学王子高斯出生的1777年是干支纪年法中的()A.丁申年 B.丙寅年 C.丁酉年 D.戊辰年8.某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,…,599,600从中抽取60个样本,如下提供随机数表的第4行到第6行:322118342978645407325242064438122343567735789056428442125331345786073625300732862345788907236896080432567808436789535577348994837522535578324577892345若从表中第6行第6列开始向右依次读取3个数据,则得到的第6个样本编号为()A.522 B.324 C.535 D.5789.在正方体中,分别是线段的中点,则下列判断错误的是()A.与垂直 B.与垂直C.与平行 D.与平行10.从装有红球和绿球的口袋内任取2个球(其中红球和绿球都多于2个),那么互斥而不对立的两个事件是()A.至少有一个红球,至少有一个绿球B.恰有一个红球,恰有两个绿球C.至少有一个红球,都是红球D.至少有一个红球,都是绿球二、填空题:本大题共6小题,每小题5分,共30分。11.函数的反函数为__________.12.已知等差数列的前项和为,且,,则;13.函数的单调递减区间为______.14.求374与238的最大公约数结果用5进制表示为_________.15.用秦九韶算法求多项式当时的值的过程中:,__.16.已知锐角、满足,,则的值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.对于三个实数、、,若成立,则称、具有“性质”.(1)试问:①,0是否具有“性质2”;②(),0是否具有“性质4”;(2)若存在及,使得成立,且,1具有“性质2”,求实数的取值范围;(3)设,,,为2019个互不相同的实数,点()均不在函数的图象上,是否存在,且,使得、具有“性质2018”,请说明理由.18.如图,已知是半径为1,圆心角为的扇形,是扇形狐上的动点,点分别在半径上,且是平行四边形,记,四边形的面积为,问当取何值时,最大?的最大值是多少?19.已知向量与不共线,且,.(1)若与的夹角为,求;(2)若向量与互相垂直,求的值.20.已知数列的前项和为,对任意满足,且,数列满足,,其前9项和为63.(1)求数列和的通项公式;(2)令,数列的前项和为,若存在正整数,有,求实数的取值范围;(3)将数列,的项按照“当为奇数时,放在前面;当为偶数时,放在前面”的要求进行“交叉排列”,得到一个新的数列:…,求这个新数列的前项和.21.已知分别是的三个内角所对的边.(1)若的面积,求的值;(2)若,且,试判断的形状.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
先将展开并化简,再根据二倍角公式,计算可得。【详解】由题得,,整理得,又为锐角,则,,解得.故选:A【点睛】本题考查两角和差公式以及二倍角公式,是基础题。2、B【解析】
设两人步行,跑步的速度分别为,().图书馆到教室的路程为,再分别表示甲乙的时间,作商比较即可.【详解】设两人步行、跑步的速度分别为,().图书馆到教室的路程为.则甲所用的时间为:.乙所用的时间,满足+,解得.则===1.∴.故乙先到教室.故选:B.【点睛】本题考查了路程与速度、时间的关系、基本不等式的性质,属于基础题.3、C【解析】试题分析:设两数的等比中项为,等比中项为-1或1考点:等比中项4、C【解析】
求出A∩B即得解.【详解】由题得A∩B={2,3,4},所以A∩B中元素的个数是3.故选:C【点睛】本题主要考查集合的交集的计算,意在考查学生对该知识的理解掌握水平,属于基础题.5、D【解析】
根据题意,分析可得,对其变形可得,由基本不等式分析可得答案.【详解】解:根据题意,正数,满足,则;即的最小值是;故选:.【点睛】本题考查基本不等式的性质以及应用,关键是掌握基本不等式应用的条件.6、A【解析】
计算数据中心点,代入回归方程得到答案.【详解】x=4+6+113=7,代入回归方程y7=-0.8×7+a故答案选A【点睛】本题考查了回归方程,掌握回归方程过中心点是解题的关键.7、C【解析】
天干是以10为公差的等差数列,地支是以12为公差的等差数列,按照这个规律进行推理,即可得到结果.【详解】由题意,天干是以10为公差的等差数列,地支是以12为公差的等差数列,1994年是甲戌年,则1777的天干为丁,地支为酉,故选:C.【点睛】本题主要考查了等差数列的定义及等差数列的性质的应用,其中解答中认真审题,合理利用等差数列的定义,以及等差数列的性质求解是解答的关键,着重考查了推理与运算能力,属于基础题.8、D【解析】
根据随机抽样的定义进行判断即可.【详解】第行第列开始的数为(不合适),,(不合适),,,,(不合适),(不合适),,(重复不合适),则满足条件的6个编号为,,,,,则第6个编号为本题正确选项:【点睛】本题主要考查随机抽样的应用,根据定义选择满足条件的数据是解决本题的关键.9、D【解析】
利用数形结合,逐一判断,可得结果.【详解】如图由分别是线段的中点所以//A选项正确,因为,所以B选项正确,由,所以C选项正确D选项错误,由//,而与相交,所以可知,异面故选:D【点睛】本题主要考查空间中直线与直线的位置关系,属基础题.10、B【解析】由于从口袋中任取2个球有三个事件,恰有一个红球,恰有两个绿球,一红球和一绿球.所以恰有一个红球,恰有两个绿球是互斥而不对立的两个事件.因而应选B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由得,即,把与互换即可得出【详解】由得所以把与互换,可得故答案为:【点睛】本题考查的是反函数的求法,较简单.12、1【解析】
若数列{an}为等差数列则Sm,S2m-Sm,S3m-S2m仍然成等差数列.所以S10,S20-S10,S30-S20仍然成等差数列.因为在等差数列{an}中有S10=10,S20=30,所以S30=1.故答案为1.13、【解析】
利用二倍角降幂公式和辅助角公式可得出,然后解不等式,即可得出函数的单调递减区间.【详解】,解不等式,得,因此,函数的单调递减区间为.故答案为:.【点睛】本题考查正弦型三角函数单调区间的求解,一般利用三角恒等变换思想将三角函数解析式化简,考查计算能力,属于中等题.14、【解析】
根据最大公约数的公式可求得两个数的最大公约数,再由除取余法即可将进制进行转换.【详解】374与238的最大公约数求法如下:,,,,所以两个数的最大公约数为34.由除取余法可得:所以将34化为5进制后为,故答案为:.【点睛】本题考查了最大公约数的求法,除取余法进行进制转化的应用,属于基础题.15、1【解析】
f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,进而得出.【详解】f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,当x=2时,v0=5,v1=5×2+2=12,v2=12×2+3=27,v3=27×2﹣2=1.故答案为:1.【点睛】本题考查了秦九韶算法,考查了推理能力与计算能力,属于基础题.16、【解析】
计算出角的取值范围,利用同角三角函数的平方关系计算出的值和的值,然后利用两角差的余弦公式可计算出的值.【详解】由题意可知,,,,则,.因此,.故答案为.【点睛】本题考查利用两角差的余弦公式求值,同时也考查了同角三角函数的平方关系求值,解题时要明确所求角与已知角之间的关系,合理利用公式是解题的关键,考查运算求解能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)①具有“性质2”,②不具有“性质4”;(2);(3)存在.【解析】
(1)①根据题意需要判断的真假即可②根据题意判断是否成立即可得出结论;(2)根据具有性质2可求出的范围,由存在性问题成立转化为,根据函数的性质求最值即可求解.【详解】(1)①因为,成立,所以,故,0具有“性质2”②因为,设,则设,对称轴为,所以函数在上单调递减,当时,,所以当时,不恒成立,即不成立,故(),0不具有“性质4”.(2)因为,1具有“性质2”所以化简得解得或.因为存在及,使得成立,所以存在及使即可.令,则,当时,,所以在上是增函数,所以时,,当时,,故时,因为在上单调递减,在上单调递增,所以,故只需满足即可,解得.(3)假设具有“性质2018”,则,即证明在任意2019个互不相同的实数中,一定存在两个实数,满足:.证明:由,令,由万能公式知,将等分成2018个小区间,则这2019个数必然有两个数落在同一个区间,令其为:,即,也就是说,在,,,这2019个数中,一定有两个数满足,即一定存在两个实数,满足,从而得证.【点睛】本题主要考查了不等式的证明,根据存在性问题求参数的取值范围,三角函数的单调性,万能公式,考查了创新能力,属于难题.18、当时,最大,最大值为【解析】
设,,在中,由余弦定理,基本不等式可得,根据三角形的面积公式即可求解.【详解】解:设,在中,由余弦定理得:,由基本不等式,,可得,当且仅当时取等号,∴,当且仅当时取等号,此时,∴当时,最大,最大值为.【点睛】本题主要考查余弦定理,基本不等式,三角形的面积公式的综合应用,考查了计算能力和转化思想,属于基础题.19、(1)(2)【解析】
(1)根据平面向量的数量积即可解决.(2)根据两个向量垂直,数量积为0即可解决.【详解】解:(1)(2)由题意可得:,即,,
.【点睛】本题主要考查了平面向量的数量积,及两个向量垂直时数量积为0的情况,属于基础题.20、(1);(2);(3)【解析】试题分析:(1)由已知得数列是等差数列,从而易得,也即得,利用求得,再求得可得数列通项,利用已知可得是等差数列,由等差数列的基本量法可求得;(2)代入得,变形后得,从而易求得和,于是有,只要求得的最大值即可得的最小值,从而得的范围,研究的单调性可得;(3)根据新数列的构造方法,在求新数列的前项和时,对分类:,和三类,可求解.试题解析:(1)∵,∴数列是首项为1,公差为的等差数列,∴,即,∴,又,∴.∵,∴数列是等差数列,设的前项和为,∵且,∴,∴的公差为(2)由(1)知,∴,∴设,则,∴数列为递增数列,∴,∵对任意正整数,都有恒成立,∴.(3)数列的前
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年社会学调查分析题目
- 2026年职场技能提升测试题集及答案解析
- 江苏省兴化市安丰初级中学2026届生物高一下期末质量检测模拟试题含解析
- 2026年工程师岗位竞聘专业问题解答与解决方案面试题目集
- 2026年计算机视觉算法工程师笔试题目集
- 2026年英语教育专业学生教学法与课程设计题库
- 2026年电气自动化控制技术专业试题集
- 2026年投资顾问资产配置与风险管理实操考试题
- 2026年自然地理常识及考点习题集详解
- 2026年法医学理论与实践应用能力测试题
- T/TMAC 031.F-2020企业研发管理体系要求
- 简易运输合同协议书模板
- 高考英语必背600短语总结
- 防渗漏体系策划培训(中建)
- 锅炉教材模块一锅炉认知
- GB/T 34765-2024肥料和土壤调理剂黄腐酸含量及碳系数的测定方法
- 传染性疾病影像学课件
- 监狱服装加工合同范本
- HG20202-2014 脱脂工程施工及验收规范
- 广东省幼儿园一日活动指引(试行)
- (高清版)TDT 1057-2020 国土调查数据库标准
评论
0/150
提交评论